Modulhandbuch
Ingenieurepadagogik, 20151 (B.Sc.)
SPO 2015
Sommersemester 2022
Stand 20.03.2022

KIT-FAKULTÄT FÜR GEISTES- UND SOZIALWISSENSCHAFTEN
Vorbemerkung

In diesem Modulhandbuch finden Sie Informationen zur Studiengangstruktur, zu den Modulen und Teilleistungen, den Lehrveranstaltungen und Prüfungsveranstaltungen im Sommersemester 2022 (und auch im Wintersemester 2021-22).

Weitergehende Informationen, allgemeine Information zum Studiengang, Studienpläne und Studienverlaufspläne sowie die Studien- und Prüfungsordnung finden Sie auf der Website der KIT-Fakultät für Geistes- und Sozialwissenschaften unter www.geistsoz.kit.edu/ingenieurpaedagogik.php
Inhaltsverzeichnis

1. Aufbau des Studiengangs ... 10
 1.1. Orientierungsprüfung ... 10
 1.2. Bachelorarbeit .. 11
 1.3. Berufspädagogik ... 11
 1.4. Berufliche Fachrichtung (Hauptfach): Bautechnik 12
 1.5. Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung .. 13
 1.6. Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung .. 14
 1.7. Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung .. 14
 1.8. Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung .. 15
 1.9. Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung .. 15
 1.10. Wahlpflichtfach (2. Unterrichtsfach): Geschichte mit Gemeinschaftskunde ... 15
 1.11. Wahlpflichtfach (2. Unterrichtsfach): Mathematik 16
 1.13. Wahlpflichtfach (2. Unterrichtsfach): Sport 16
 1.15. Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung .. 16
 1.16. Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung .. 16
 1.17. Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung .. 17
 1.18. Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung .. 17
 1.20. Betriebspraktikum ... 17
 1.22. Zusatzausleistungen .. 17
 1.23. Mastervorzug .. 18

2. Module .. 19
 2.1. Analysis 1 und 2 - M-MATH-101306 19
 2.2. Analysis und Lineare Algebra - M-MATH-101716 21
 2.3. Angewandte Statistik [bauBGP07-STATS] - M-BGU-101749 22
 2.5. Bauinformatik I [bauBGP14-BINF1] - M-BGU-101757 24
 2.10. Berufspädagogische Grundlagen [BPäd-Grdg] - M-GEISTSOZ-100612 ... 32
 2.11. Berufspädagogisches Praktikum - M-GEISTSOZ-104760 34
 2.13. Bewegung und Training - IngPäd - M-GEISTSOZ-103280 36
 2.15. Differentialgleichungen - M-MATH-101712 39
 2.16. Digitaltechnik - M-ETIT-102102 .. 40
 2.18. Einführung Sportwissenschaft [SPOW-BSc-EinfSpow] - M-GEISTSOZ-100922 ... 43
 2.19. Elektrische Energienetze - M-ETIT-100572 45
 2.20. Elektrische Maschinen und Stromrichter - M-ETIT-102124 46
 2.21. Elektroenergiesysteme - M-ETIT-102156 47
 2.22. Elektronische Schaltungen - M-ETIT-104465 48
 2.23. Elektronische Systeme und EMV - M-ETIT-100410 50
 2.24. Elektrotechnik - M-ETIT-104801 .. 51
 2.25. Elektrotechnisches Grundlagenpraktikum - M-ETIT-102113 53
 2.27. Erzeugung elektrischer Energie - M-ETIT-100407 56
 2.28. Experimentalphysik - M-PHYS-101684 57
 2.29. Fertigungsprozesse - M-MACH-102549 58
 2.30. Festigkeitslehre [bauBG02-TM2] - M-BGU-101746 59
 2.31. Finanzierung und Rechnungswesen - M-WIWI-105769 61
 2.33. Geotechnisches Ingenieurwesen [bauBFP7-GEOING] - M-BGU-103698 63
 2.34. Gewerke und Technik im schlüsselfertigen Hochbau [bauEX405] - M-BGU-105335 65
2.36. Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik) [GdG] - M-GEISTSOZ-105138 ..68
2.37. Grundlagen der Hochfrequenztechnik - M-ETIT-102129 ...69
2.38. Grundlagen der Physik - M-PHY-101682 ...70
2.40. Grundlagen des Stahlbetonbaus [bauBFP2-KSTR.A] - M-BGU-103696 ..73
2.41. Grundlagen Mannschaftssport [SPOW-BSc-Mansport] - M-GEISTSOZ-101701 ..74
2.42. Hardware/Software Co-Design - M-ETIT-100453 ...76
2.43. Hochleistungsstromrichter - M-ETIT-100398 ...78
2.44. Höhere Mathematik I - M-MATH-101731 ...79
2.45. Höhere Mathematik I - M-MATH-100280 ...80
2.46. Höhere Mathematik II - M-MATH-100281 ...81
2.47. Höhere Mathematik II - M-MATH-101732 ...82
2.48. Höhere Mathematik III - M-MATH-101738 ...83
2.49. Hydromechanik [bauBGP04-HYDRO] - M-BGU-101746 ...84
2.50. Informatik - M-MACH-105449 ...86
2.51. Informationsfusion - M-ETIT-103284 ...87
2.52. Informationstechnik I - M-ETIT-104539 ...89
2.53. Informationstechnik in der industriellen Automation - M-ETIT-100367 ...91
2.54. Integralechnung und Funktionen mehrerer Veränderlicher - M-MATH-101714 ...92
2.55. Laborpraktikum [bauBGW-LABOR] - M-BGU-101763 ...93
2.56. Leistungsselektrotronik - M-ETIT-100533 ...94
2.57. Lineare Elektrische Netze - M-ETIT-104519 ...96
2.58. Management und Marketing - M-WWI-105768 ...98
2.59. Maschinen und Prozesse - M-MACH-105450 ...99
2.60. Maschinenkonstruktionslehre [CI-MACH-02] - M-MACH-101299 ..100
2.61. Mess- und Regelungstechnik - M-MACH-105451 ..104
2.62. Messtechnik - M-ETIT-102652 ...105
2.63. Mikrosystemtechnik - M-ETIT-100454 ...106
2.64. Mobilität und Infrastruktur [bauBFP5-MOBIN] - M-BGU-103486 ..107
2.66. Nachrichtentechnik I - M-ETIT-102103 ...109
2.67. Nachrichtentechnik II / Communications Engineering II - M-ETIT-105274 ..111
2.68. Organisation und Handlungsfelder der beruflichen Bildung [BPäd-OrganHfBB] - M-GEISTSOZ-100639 ..113
2.69. Orientierungsprüfung Bautechnik - M-GEISTSOZ-100889 ..115
2.70. Orientierungsprüfung Berufspädagogik - M-GEISTSOZ-104484 ..116
2.71. Orientierungsprüfung Elektrotechnik - M-GEISTSOZ-102340 ..117
2.72. Orientierungsprüfung Metalltechnik - M-GEISTSOZ-105474 ..118
2.73. Planung beruflicher Bildung [BPäd-PlanBB] - M-GEISTSOZ-100659 ..119
2.74. Planungsmethodik [bauBGP11-PLANIT] - M-BGU-103743 ..121
2.75. Praxis des beruflichen Lehrens und Lernens [BPäd-PraxisLL] - M-GEISTSOZ-100672 ..122
2.76. Produktion, Logistik und Wirtschaftsinformatik - M-WWI-105770 ..124
2.77. Projektmanagement [bauBGP12-PMANG] - M-BGU-101755 ..125
2.78. Proseminar Mathematik [IN3MATHPS] - M-MATH-101313 ..126
2.79. Regelung elektrischer Antriebe - M-ETIT-100395 ..127
2.80. Schulpraktikum - M-GEISTSOZ-104761 ...128
2.81. Schwerpunkt: Automatisierungstechnik [SP 04] - M-MACH-102601 ..129
2.82. Schwerpunkt: Grundlagen der Energietechnik [SP 15] - M-MACH-102623 ..131
2.83. Schwerpunkt: Grundlagen der Energietechnik - M-MACH-102816 ..133
2.84. Schwerpunkt: Kraftfahrzeugtechnik [SP 12] - M-MACH-102818 ..135
2.86. Schwerpunkt: Produktionsysteme [SP 38] - M-MACH-102589 ..140
2.87. Schwerpunkt: Produktionstechnik [SP 39] - M-MACH-102618 ..141
2.88. Signale und Systeme - M-ETIT-104525 ...143
2.89. Statik starrer Körper [bauBGP01-TM1] - M-BGU-101745 ..145
2.90. Strömungslehre [BSc-Modul 12, SL] - M-MACH-102565 ..147
2.91. Systemdynamik und Regelungstechnik - M-ETIT-102181 ..149
2.92. Systems and Software Engineering - M-ETIT-100537 ..150
2.93. Technische Mechanik I - M-MACH-100279 ...151
2.94. Technische Mechanik II - M-MACH-100284 ...153
2.95. Technische Thermodynamik und Wärmeübertragung I - M-MACH-102386 ..155
2.96. Technisches Darstellen [bauBGW5-TECDS] - M-BGU-101761 ..157
2.97. Technologie und Management im Baubetrieb [bauBFP6-TMB] - M-BGU-101754 ..158

Inhaltsverzeichnis

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022

3
3. Teilleistungen ... 169

3.1. Alternative Antriebe für Automobile - T-MACH-105655 ... 169
3.2. Analysis 1 - Klausur - T-MATH-106335 .. 170
3.3. Analysis 1 Übungsschein - T-MATH-102235 .. 171
3.4. Analysis 2 - Klausur - T-MATH-106336 .. 172
3.5. Analysis 2 Übungsschein - T-MATH-102236 .. 173
3.6. Analysis und Lineare Algebra - Klausur - T-MATH-103325 .. 174
3.7. Angewandte Statistik - T-BGU-103381 .. 175
3.8. Ansätze der gewerblich-technischen Lehrerbildung - T-GEISTSOZ-101141 176
3.9. Antriebssystemtechnik A: Fahrzeugantriebstechnik - T-MACH-105233 178
3.10. Arbeitsgemeinschaft Experimentalphysik A - T-PHY-103246 ... 179
3.11. Arbeitsgemeinschaft Experimentalphysik B - T-PHY-103248 ... 180
3.13. Arbeitswissenschaft II: Arbeitsorganisation - T-MACH-105519 183
3.15. Ausgewählte Themen virtueller Ingenieuranwendungen - T-MACH-105381 187
3.16. Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben - T-MACH-110958 .. 188
3.17. Auslegung von Brennstoffzellenanlagen - T-MACH-111398 .. 190
3.18. Automatisierte Produktionsanlagen - T-MACH-108844 ... 192
3.20. Bauchemie - T-BGU-103400 ... 195
3.22. Bauinformatik II - T-BGU-103398 ... 197
3.23. Baukonstruktionslehre - T-BGU-103386 ... 198
3.24. Bauphysik - T-BGU-103384 ... 199
3.25. Baustatik I - T-BGU-103387 ... 200
3.26. Baustatik II - T-BGU-103388 .. 201
3.27. Baustoffkunde - T-BGU-103382 .. 202
3.28. Berufspädagogisches Praktikum (4 Wochen) - T-GEISTSOZ-109720 203
3.29. Betriebspraktikum - T-GEISTSOZ-109866 ... 204
3.30. Betriebssäfte für motorische Antriebe - T-MACH-111623 .. 205
3.31. CAE-Workshop - T-MACH-105212 .. 206
3.32. CFD-Praktikum mit OpenFOAM - T-MACH-105313 .. 208
3.33. CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I - T-MACH-111550 209
3.34. CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II - T-MACH-111560 212
3.35. Computational Intelligence - T-MACH-105314 .. 213
3.36. Data Driven Engineering 1: Machine Learning for Dynamical Systems - T-MACH-111193 .. 215
3.38. Datenanalyse für Ingenieure - T-MACH-105694 .. 219
3.39. Didaktik und Methodik - T-GEISTSOZ-108354 .. 221
3.40. Differentialgleichungen - Klausur - T-MATH-103323 ... 224
3.41. Digitale Regelungen - T-MACH-105317 .. 225
3.42. Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie - T-MACH-110176 .. 227
3.43. Digitalechnik - T-ETIT-101918 ... 229
3.44. Dimensionierung mit Numerik in der Produktdynamik - T-MATH-108719 230
3.45. Dimensionierung mit Verbundwerkstoffen - T-MACH-108721 .. 231
3.46. Dynamik - T-BGU-103379 ... 232
3.47. Dynamik des Kfz-Antriebsstrangs - T-MACH-105226 ... 233
3.48. Einführung in die Berufspädagogik - T-GEISTSOZ-100990 .. 234
3.49. Einführung in die Berufspädagogik - T-GEISTSOZ-100990 .. 234
3.50. Einführung in die Didaktik der politischen Bildung (fadidaktische Veranstaltung) - T-GEISTSOZ-103018 .. 235
3.51. Einführung in die internationalen Beziehungen - T-GEISTSOZ-103017 238
3.52. Einführung in die Kernenergie - T-MACH-105525 ... 239
3.53. Einführung in die Kulturgeschichte der Technik - T-GEISTSOZ-101186 240
<p>| 3.54. Einführung in die Mechatronik - T-MACH-100535 | 242 |
| 3.55. Einführung in die Mehrkörperräumlichkeit - T-MACH-105209 | 243 |
| 3.56. Einführung in die Numerische Strömungsmechanik - T-MACH-110362 | 244 |
| 3.57. Einführung in die numerische Strömungstechnik - T-MACH-105515 | 246 |
| 3.58. Einführung in die Politikwissenschaft - T-GEISTSOZ-103016 | 247 |
| 3.59. Einführung in die Politische Geschichte - T-GEISTSOZ-101185 | 248 |
| 3.60. Einführung Sportwissenschaft - T-GEISTSOZ-103244 | 250 |
| 3.61. Elektrische Energiemittel - T-ETIT-100830 | 252 |
| 3.62. Elektrische Maschinen und Stromrichter - T-ETIT-101954 | 253 |
| 3.63. Elektroenergiesysteme - T-ETIT-101923 | 254 |
| 3.64. Elektronische Schaltungen - T-ETIT-109318 | 255 |
| 3.65. Elektronische Schaltungen - Workshop - T-ETIT-109138 | 256 |
| 3.66. Elektronische Systeme und EMV - T-ETIT-100723 | 257 |
| 3.67. Elektrotechnik und Elektronik - T-ETIT-109820 | 258 |
| 3.68. Elektrotechnisches Grundlagenpraktikum - T-ETIT-101943 | 259 |
| 3.69. Elemente und Systeme der Technischen Logistik - T-MACH-102159 | 260 |
| 3.70. Elemente und Systeme der Technischen Logistik - Projekt - T-MACH-108946 | 261 |
| 3.71. Energieeffiziente Intralogistiksysteme (mach und wiwi) - T-MACH-105151 | 262 |
| 3.72. Energiesysteme I - Regenerative Energien - T-MACH-105408 | 264 |
| 3.73. Entwicklung des hybriden Antriebsstranges - T-MACH-110817 | 265 |
| 3.74. Erzeugung elektrischer Energie - T-ETIT-101924 | 266 |
| 3.75. Experimentalphysik - T-PHYS-100278 | 267 |
| 3.76. Experimentalphysik A - T-PHYS-103240 | 269 |
| 3.77. Experimentelles Schweißtechnisches Praktikum, in Gruppen - T-MACH-102099 | 270 |
| 3.78. Fahrreigenschaften von Kraftfahrzeugen I - T-MACH-105152 | 271 |
| 3.79. Fahrreigenschaften von Kraftfahrzeugen II - T-MACH-105153 | 272 |
| 3.80. Fahrzeugergonomie - T-MACH-108374 | 273 |
| 3.81. Fahrzeugkomfort und -akustik I - T-MACH-105154 | 274 |
| 3.82. Fahrzeugkomfort und -akustik II - T-MACH-105155 | 276 |
| 3.83. Fahrzeugentwicklung - Strategien, Konzepte, Werkstoffe - T-MACH-105237 | 279 |
| 3.84. Fahrzeugmechatronik I - T-MACH-105156 | 281 |
| 3.85. Fahrzeugmaschinen- und Räderentwicklung für PKW - T-MACH-102207 | 282 |
| 3.86. Fahrzeugseitenschutz - T-MACH-105218 | 283 |
| 3.87. Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung - T-MACH-105535 | 285 |
| 3.88. Fertigungstechnik - T-MACH-102105 | 287 |
| 3.89. Festigkeitslehre - T-BGU-103378 | 289 |
| 3.90. Finanzierung und Rechnungswesen - T-WIWI-111596 | 290 |
| 3.91. Fluidtechnik - T-MACH-102093 | 292 |
| 3.92. Gasdynamik - T-MACH-105533 | 294 |
| 3.93. Geologie im Bauwesen - T-BGU-103395 | 296 |
| 3.94. Geotechnisches Ingenieurwesen - T-BGU-107465 | 297 |
| 3.95. Geschichtswissenschaftliche Arbeitstechniken - T-GEISTSOZ-109193 | 298 |
| 3.96. Gewerke und Technik im schlüsselfertigen Hochbau - T-BGU-110821 | 299 |
| 3.97. Gießereikunde - T-MACH-105157 | 300 |
| 3.98. Globale Logistik - T-MACH-111003 | 302 |
| 3.99. Globale Produktion - T-MACH-110991 | 304 |
| 3.100. Globale Produktion und Logistik - T-MACH-103379 | 307 |
| 3.101. Grundfach Basketball - Praxis - T-GEISTSOZ-100840 | 310 |
| 3.102. Grundfach Basketball - Theorie - T-GEISTSOZ-100842 | 315 |
| 3.103. Grundfach Fußball - Praxis - T-GEISTSOZ-100847 | 320 |
| 3.104. Grundfach Fußball - Theorie - T-GEISTSOZ-100846 | 326 |
| 3.105. Grundfach Handball - Praxis - T-GEISTSOZ-100845 | 332 |
| 3.106. Grundfach Handball - Theorie - T-GEISTSOZ-100844 | 337 |
| 3.109. Grundlagen der Energetik - T-MACH-105220 | 358 |
| 3.110. Grundlagen der Fahrzeugtechnik I - T-MACH-100092 | 360 |
| 3.111. Grundlagen der Fahrzeugtechnik II - T-MACH-102117 | 362 |
| 3.112. Grundlagen der Fertigungstechnik - T-MACH-105219 | 364 |
| 3.113. Grundlagen der Hochfrequenztechnik - T-ETIT-101955 | 366 |
| 3.114. Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren - T-MACH-105044 | 367 |
| 3.115. Grundlagen der Mess- und Regelungstechnik - T-MACH-110988 | 368 |</p>
<table>
<thead>
<tr>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.116. Grundlagen der Technischen Logistik I - T-MACH-109919</td>
</tr>
<tr>
<td>3.117. Grundlagen der Technischen Logistik II - T-MACH-109920</td>
</tr>
<tr>
<td>3.118. Grundlagen der technischen Verbrennung I - T-MACH-105213</td>
</tr>
<tr>
<td>3.119. Grundlagen der technischen Verbrennung II - T-MACH-105325</td>
</tr>
<tr>
<td>3.120. Grundlagen des Holzbau - T-BGU-107463</td>
</tr>
<tr>
<td>3.121. Grundlagen des Stahlbaus - T-BGU-107462</td>
</tr>
<tr>
<td>3.122. Grundlagen des Stahlbetonbaus I - T-BGU-103389</td>
</tr>
<tr>
<td>3.123. Grundlagen des Stahlbetonbaus II - T-BGU-103390</td>
</tr>
<tr>
<td>3.124. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I - T-MACH-102116</td>
</tr>
<tr>
<td>3.125. Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II - T-MACH-102119</td>
</tr>
<tr>
<td>3.126. Grundsätze der Nutzfahrzeugentwicklung - T-MACH-111389</td>
</tr>
<tr>
<td>3.127. Grundsätze der PKW-Entwicklung I - T-MACH-105162</td>
</tr>
<tr>
<td>3.128. Grundsätze der PKW-Entwicklung II - T-MACH-105163</td>
</tr>
<tr>
<td>3.129. Handlungsfelder der beruflichen Bildung - T-GEISTSOZ-100994</td>
</tr>
<tr>
<td>3.130. Hardware/Software Co-Design - T-ETIT-100671</td>
</tr>
<tr>
<td>3.131. Hochleistungsstromrichter - T-ETIT-100715</td>
</tr>
<tr>
<td>3.132. Höhere Mathematik I - T-MATH-100275</td>
</tr>
<tr>
<td>3.133. Höhere Mathematik I - Klausur - T-MATH-103353</td>
</tr>
<tr>
<td>3.134. Höhere Mathematik II - T-MATH-100276</td>
</tr>
<tr>
<td>3.135. Höhere Mathematik II - Klausur - T-MATH-103354</td>
</tr>
<tr>
<td>3.136. Höhere Mathematik III - Klausur - T-MATH-103357</td>
</tr>
<tr>
<td>3.137. Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes - T-MACH-106374</td>
</tr>
<tr>
<td>3.138. Hybride und elektrische Fahrzeuge - T-ETIT-100784</td>
</tr>
<tr>
<td>3.139. Hydraulische Strömungsmaschinen - T-MACH-105326</td>
</tr>
<tr>
<td>3.140. Hydromechanik - T-BGU-103380</td>
</tr>
<tr>
<td>3.141. Industrieanerodynamik - T-MACH-105375</td>
</tr>
<tr>
<td>3.142. Industrielle Fertigungswirtschaft - T-MACH-105388</td>
</tr>
<tr>
<td>3.143. Informatik im Maschinenbau - T-MACH-105205</td>
</tr>
<tr>
<td>3.144. Informatik im Maschinenbau, Seminar - T-MACH-111001</td>
</tr>
<tr>
<td>3.145. Informatik im Maschinenbau, VL - T-MACH-105206</td>
</tr>
<tr>
<td>3.146. Informationssfusion - T-ETIT-106499</td>
</tr>
<tr>
<td>3.147. Informationstechnik I - T-ETIT-109300</td>
</tr>
<tr>
<td>3.148. Informationstechnik I - Praktikum - T-ETIT-109301</td>
</tr>
<tr>
<td>3.149. Informationstechnik in der industriellen Automation - T-ETIT-100698</td>
</tr>
<tr>
<td>3.150. Integralrechnung und Funktionen mehrerer Veränderlicher - Klausur - T-MATH-103324</td>
</tr>
<tr>
<td>3.151. Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen - T-MACH-105188</td>
</tr>
<tr>
<td>3.152. Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 - T-MACH-108849</td>
</tr>
<tr>
<td>3.153. International Production Engineering A - T-MACH-110334</td>
</tr>
<tr>
<td>3.154. International Production Engineering B - T-MACH-110335</td>
</tr>
<tr>
<td>3.155. Konstruktionsbaustoffe - T-BGU-103383</td>
</tr>
<tr>
<td>3.156. Konstruktives Leichtbau - T-MACH-105221</td>
</tr>
<tr>
<td>3.157. Kontinuumsmathematik der Festkörper und Fluide - T-MACH-110377</td>
</tr>
<tr>
<td>3.158. Laborpraktikum - T-BGU-103403</td>
</tr>
<tr>
<td>3.159. Lager- und Distributionssysteme - T-MACH-105174</td>
</tr>
<tr>
<td>3.160. Lasereinsatz im Automobilbau - T-MACH-105164</td>
</tr>
<tr>
<td>3.161. Leadership and Management Development - T-MACH-105231</td>
</tr>
<tr>
<td>3.162. Lehr-/Lernkonzepte - T-GEISTSOZ-108353</td>
</tr>
<tr>
<td>3.163. Lehrlabor: Energietechnik - T-MACH-105331</td>
</tr>
<tr>
<td>3.165. Leistungselektronik - T-ETIT-100801</td>
</tr>
<tr>
<td>3.166. Lernfabrik Globale Produktion - T-MACH-105783</td>
</tr>
<tr>
<td>3.167. Lineare Elektrische Netze - T-ETIT-109316</td>
</tr>
<tr>
<td>3.168. Lineare Elektrische Netze - Workshop A - T-ETIT-109317</td>
</tr>
<tr>
<td>3.169. Lineare Elektrische Netze - Workshop B - T-ETIT-109811</td>
</tr>
<tr>
<td>3.171. Management und Marketing - T-WIWI-115194</td>
</tr>
<tr>
<td>3.172. Maschinen und Prozesse - T-MACH-110993</td>
</tr>
<tr>
<td>3.173. Maschinen und Prozesse, Vorleistung - T-MACH-110994</td>
</tr>
<tr>
<td>3.174. Maschinen-undsystemdynamik - T-MACH-105210</td>
</tr>
<tr>
<td>3.175. Maschinenkonstruktionslehre Grundlagen I und II - T-MACH-110363</td>
</tr>
<tr>
<td>3.176. Maschinenkonstruktionslehre Grundlagen I, Vorleistung - T-MACH-110364</td>
</tr>
<tr>
<td>3.177. Maschinenkonstruktionslehre Grundlagen II, Vorleistung - T-MACH-110365</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

3.178. Materialfluss in Logistiksystemen - T-MACH-102151 ..460
3.179. Mathématiques appliquées aux sciences de l'ingénieur - T-MACH-105452462
3.181. Mathematische Methoden des Kontinuumsmechanik - T-MACH-110375466
3.182. Mathematische Methoden der Schwingungskunde - T-MACH-105294 ...467
3.183. Mathematische Methoden der Strömungskunde - T-MACH-105295 ...468
3.184. Mathematische Modelle und Methoden für Produktionssysteme - T-MACH-105189470
3.185. Mechanik laminiert Kooperative - T-MACH-108717 ...472
3.187. Messtechnik II - T-MACH-105335 ..474
3.188. Methoden zur Analyse der motorischen Verbrennung - T-MACH-105167476
3.189. Microenergy Technologies - T-MACH-105557 ...477
3.190. Mikrostruktursimulation - T-MACH-105303 ...478
3.191. Mikrosystemtechnik - T-ETIT-100752 ..480
3.192. Mobilität und Infrastruktur - T-BGU-101791 ..481
3.193. Modellierung und Simulation - T-MACH-100300 ..483
3.194. Moderne Regelungskonzepte I - T-MACH-105539 ...486
3.195. Moderne Regelungskonzepte II - T-MACH-106891 ...488
3.196. Moderne Regelungskonzepte III - T-MACH-106892 ..490
3.197. Modulprüfung Klausur 1 LP - T-GEISTSOZ-103019 ...491
3.198. Modulprüfung Planung beruflicher Bildung - T-GEISTSOZ-106088 ..492
3.199. Modulprüfung Portfolio 2 LP - T-GEISTSOZ-101164 ...493
3.200. Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft - T-GEISTSOZ-109227 ...494
3.201. Motorenesstech - T-MACH-105169 ..495
3.203. Nachbereitendes Seminar zum Betriebsspraktikum - T-GEISTSOZ-109865499
3.204. Nachhaltige Fahrzeugantriebe - T-MACH-111578 ...500
3.205. Nachrichtentechnik I - T-ETIT-101936 ..501
3.207. Numerische Mechanik für Industrieanwendungen - T-MACH-108720503
3.208. Numerische Simulation reagierender Zweiphasenströmungen - T-MACH-105339504
3.209. Numerische Strömungsmechanik - T-MACH-105338 ..506
3.211. Orientierung Geschichte - T-GEISTSOZ-101182 ...508
3.212. Pädagogische Psychologie - T-GEISTSOZ-101098 ...509
3.213. Patente und Patentstrategien in innovativen Unternehmen - T-MACH-105442510
3.214. Photovoltaik - T-ETIT-101939 ..512
3.215. Physik für Ingenieure - T-MACH-100530 ..513
3.216. Physikalische Grundlagen der Lasertechnik - T-MACH-102102 ...515
3.217. Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung - T-MACH-105337 ...517
3.218. Planung von Montagesystemen - T-MACH-105387 ...519
3.219. Planungsmethodik - T-BGU-107450521
3.220. Praktikum für rechnergestützte Strömungsmechanik - T-MACH-106707522
3.221. Praktikum Lasermaterialbearbeitung - T-MACH-102154 ...525
3.222. Praktikum Produktionsintegrierte Messtechnik - T-MACH-108878 ...528
3.223. Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik - T-MACH-105341530
3.224. Product Lifecycle Management - T-MACH-105147 ...532
3.225. Produkt- und Produktionskonzepte für moderne Automobile - T-MACH-110318533
3.227. Produktion, Logistik und Wirtschaftsinformatik - T-WIWI-111602 ...536
3.228. Produktionsplanung und -steuerung - T-MACH-105470 ..537
3.229. Produktionstechnik für die Elektromobilität - T-MACH-110984 ...539
3.230. Produktionstechnisches Labor - T-MACH-105346 ...541
3.231. Produktivitätsmanagement in ganzheitlichen Produktionssystemen - T-MACH-105523543
3.232. Programmieraufgaben Bauinformatik I - T-BGU-103397 ...544
3.233. Programmieraufgaben Bauinformatik II - T-BGU-103399 ..545
3.235. Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems - T-MACH-105457548
3.236. Projektierung und Entwicklung öhydraulischer Antriebssysteme - T-MACH-105441550
3.237. Projektmanagement (unbenötigt) - T-BGU-107449 ...551
3.238. Projektmanagement in globalen Produktentwicklungsstrukturen - T-MACH-105347552

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
7
Inhaltsverzeichnis

3.239. Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils - T-MACH-110960 554
3.240. Proseminar Mathematik - T-MATH-103404 556
3.241. Prüfungsvorleistung Dynamik - T-BGU-111041 557
3.242. Prüfungsvorleistung Hydromechanik - T-BGU-107586 558
3.243. PS Anwendung Trainingswissenschaft - T-GEISTSOZ-103286 559
3.244. Python Algorithmus für Fahrzeugtechnik - T-MACH-110796 563
3.245. Qualität der beruflichen Bildung - T-GEISTSOZ-101140 565
3.246. Qualität von Lehrveranstaltungen entwickeln - T-GEISTSOZ-101137 566
3.247. Qualitätsmanagement - T-MACH-102107 567
3.248. Rechnergestützte Fahrzeugdynamik - T-MACH-105350 569
3.249. Recht und Organisation der beruflichen Bildung - T-GEISTSOZ-100993 571
3.250. Regelung elektrischer Antriebe - T-ETIT-100712 572
3.251. Schülpraktikum (4 Wochen) - T-GEISTSOZ-109721 573
3.252. Schweißtechnik - T-MACH-105170 574
3.254. Seminar Data-Mining in der Produktion - T-MACH-108737 577
3.255. Signale und Systeme - T-ETIT-109313 580
3.256. Signale und Systeme - Workshop - T-ETIT-109314 581
3.257. Simulation optischer Systeme - T-MACH-105990 582
3.258. Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik - T-MACH-111396 584
3.261. Steuerungstechnik - T-MACH-105185 589
3.262. Strategische Potenzialfindung zur Entwicklung innovativer Produkte - T-MACH-105696 591
3.263. Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study - T-MACH-110396 592
3.264. Strömungen und Wärmeübertragung in der Energietechnik - T-MACH-105403 593
3.265. Strömungsllehre 1&2 - T-MACH-105207 594
3.266. Strukturberechnung von Faserverbundplänen - T-MACH-105970 597
3.267. Studienarbeiten Straßenwesen - T-BGU-106833 599
3.268. Studienarbeiten Verkehrswesen - T-BGU-106832 600
3.269. Sustainable Product Engineering - T-MACH-105358 602
3.270. Systematische Werkstoffauswahl - T-MACH-100531 603
3.271. Systemdynamik und Regelungstechnik - T-ETIT-101921 605
3.272. Systemintegration in der Mikro- und Nanotechnik - T-MACH-105555 606
3.273. Systemintegration in der Mikro- und Nanotechnik 2 - T-MACH-110272 607
3.274. Systems and Software Engineering - T-ETIT-100675 608
3.275. Technische Akustik - T-MACH-111382 609
3.276. Technische Grundlagen des Verbrennungsmotors - T-MACH-105652 611
3.277. Technische Informationssysteme - T-MACH-102083 612
3.278. Technische Mechanik I - T-MACH-100282 614
3.279. Technische Mechanik II - T-MACH-100283 615
3.280. Technische Schwingungsllehre - T-MACH-105290 617
3.281. Technische Thermodynamik und Wärmeübertragung I - T-MACH-104747 618
3.282. Technische Thermodynamik und Wärmeübertragung I, Vorleistung - T-MACH-105204 620
3.283. Technisches Darstellen - T-BGU-103402 621
3.284. Technologien der Stahlbauteile - T-MACH-105362 622
3.285. Technologie und Management im Baubetrieb - T-BGU-103392 624
3.286. Thermische Solarennergie - T-MACH-105225 625
3.287. Thermische Turbinen - T-MACH-105363 627
3.288. Trainingswissenschaft - T-GEISTSOZ-103285 630
3.289. Ü Cardio-Fit - T-GEISTSOZ-103435 633
3.290. Ü Einführung Lehrkompetenz - T-GEISTSOZ-103434 637
3.291. Ü Funktionelles Training - T-GEISTSOZ-103436 641
3.292. Ü Integrative Sportspielvermittlung - T-GEISTSOZ-103437 645
3.293. Ü Kleine Spiele - T-GEISTSOZ-103442 649
3.294. Übung zur Vorlesung: Einführung in die Berufspädagogik - T-GEISTSOZ-100991 652
3.295. Übungen zu Einführung in die Finite-Elemente-Methode - T-MACH-110330 653
3.296. Übungen zu Einführung in die Numerische Strömungsmechanik - T-MACH-111033 654
3.297. Übungen zu Globale Produktion - T-MACH-110981 655
3.298. Übungen zu Höhere Mathematik I - T-MATH-100525 657
3.299. Übungen zu Höhere Mathematik II - T-MATH-100526 658
3.300. Übungen zu Kontinuumsmechanik der Festkörper und Fluide - T-MACH-110333 659
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.301</td>
<td>Übungen zu Mathematische Methoden der Kontinuumsmechanik - T-MACH-110376</td>
</tr>
<tr>
<td>3.302</td>
<td>Übungen zu Technische Mechanik I - T-MACH-100528</td>
</tr>
<tr>
<td>3.303</td>
<td>Übungen zu Technische Mechanik II - T-MACH-100284</td>
</tr>
<tr>
<td>3.304</td>
<td>Umformtechnik - T-MACH-105177</td>
</tr>
<tr>
<td>3.305</td>
<td>Umweltphysik / Energie - T-BGU-103401</td>
</tr>
<tr>
<td>3.306</td>
<td>Verbrennungsmotoren I - T-MACH-102194</td>
</tr>
<tr>
<td>3.307</td>
<td>Verhaltensgenerierung für Fahrzeuge - T-MACH-105367</td>
</tr>
<tr>
<td>3.308</td>
<td>Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet) - T-BGU-101683</td>
</tr>
<tr>
<td>3.309</td>
<td>Verzahntechnik - T-MACH-102148</td>
</tr>
<tr>
<td>3.310</td>
<td>Virtual Reality Praktikum - T-MACH-102149</td>
</tr>
<tr>
<td>3.311</td>
<td>Volkswirtschaftslehre I: Mikroökonomie - T-WIWI-102708</td>
</tr>
<tr>
<td>3.312</td>
<td>Von der Arbeitsanalyse zur Planung beruflicher Bildung - T-GEISTSOZ-101134</td>
</tr>
<tr>
<td>3.313</td>
<td>Vorbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum - T-GEISTSOZ-101182</td>
</tr>
<tr>
<td>3.314</td>
<td>Wahrscheinlichkeitsrechnung - T-ETIT-101952</td>
</tr>
<tr>
<td>3.315</td>
<td>Wärme- und Stoffübertragung - T-MACH-105292</td>
</tr>
<tr>
<td>3.316</td>
<td>Wasserstoff und reFuels – motorische Energieumwandlung - T-MACH-111585</td>
</tr>
<tr>
<td>3.317</td>
<td>Wellenausbreitung - T-MACH-105443</td>
</tr>
<tr>
<td>3.318</td>
<td>Werkstoffkunde I & II - T-MACH-105145</td>
</tr>
<tr>
<td>3.319</td>
<td>Werkstoffkunde Praktikum - T-MACH-105146</td>
</tr>
<tr>
<td>3.320</td>
<td>Werkstoffrecycling und Nachhaltigkeit - T-MACH-110937</td>
</tr>
<tr>
<td>3.321</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme - T-MACH-110962</td>
</tr>
<tr>
<td>3.322</td>
<td>Windkraft - T-MACH-105234</td>
</tr>
<tr>
<td>3.323</td>
<td>Wissenschaftliches Arbeiten - T-GEISTSOZ-103237</td>
</tr>
<tr>
<td>3.324</td>
<td>Wissenschaftliches Programmieren für Ingenieure - T-MACH-100532</td>
</tr>
</tbody>
</table>
1 Aufbau des Studiengangs

Wahlinformationen

In der "Metalltechnik" muss die Vertiefungsrichtung im Bachelor im "Wahlpflichtfach (2. Unterrichtsfach)" und im Master "Wahlpflichtfach (2. Unterrichtsfach)" identisch sein und sich von der in der beruflichen Fachrichtung (Hauptfach) gewählten Vertiefungsrichtung unterscheiden.

Jede Lehrveranstaltung darf nur ein mal gewählt werden. Lehrveranstaltungen, die im Bachelor bereits gewählt wurden, dürfen im Master nicht wiederholt werden.

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientierungsprüfung</td>
<td>0</td>
</tr>
<tr>
<td>Bachelorarbeit</td>
<td>10</td>
</tr>
<tr>
<td>Berufspädagogik</td>
<td>40</td>
</tr>
</tbody>
</table>

Berufliche Fachrichtung (Hauptfach) (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Berufliche Fachrichtung (Hauptfach)</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bautechnik</td>
<td>98</td>
</tr>
<tr>
<td>Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme"</td>
<td>98</td>
</tr>
<tr>
<td>Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik"</td>
<td>98</td>
</tr>
<tr>
<td>Metallofen - Vertiefungsrichtung "Fertigungstechnik (FT)"</td>
<td>98</td>
</tr>
<tr>
<td>Metallofen - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"</td>
<td>98</td>
</tr>
<tr>
<td>Metallofen - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"</td>
<td>98</td>
</tr>
</tbody>
</table>

Wahlpflichtfach (2. Unterrichtsfach) (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Wahlpflichtfach (2. Unterrichtsfach)</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geschichte mit Gemeinschaftskunde</td>
<td>20</td>
</tr>
<tr>
<td>Mathematik</td>
<td>20</td>
</tr>
<tr>
<td>Physik</td>
<td>20</td>
</tr>
<tr>
<td>Sport</td>
<td>20</td>
</tr>
<tr>
<td>Bautechnik</td>
<td>20</td>
</tr>
<tr>
<td>"Fertigungstechnik (FT)"</td>
<td>20</td>
</tr>
<tr>
<td>"Fahrzeugtechnik (FZT)"</td>
<td>20</td>
</tr>
<tr>
<td>"Metallbau- und Installationstechnik (MIT)"</td>
<td>20</td>
</tr>
<tr>
<td>"Energie- und Automatisierungssysteme (ENAT)"</td>
<td>20</td>
</tr>
<tr>
<td>"System- und Informationstechnik (SIT)"</td>
<td>20</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebspraktikum</td>
<td>7</td>
</tr>
<tr>
<td>Berufspädagogisches Praktikum bzw. Schulpraktikum</td>
<td>5</td>
</tr>
</tbody>
</table>

Freiwillige Bestandteile

<table>
<thead>
<tr>
<th>Freiwillige Bestandteil</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zusatzleistungen</td>
<td>5</td>
</tr>
<tr>
<td>Mastervorzug</td>
<td>5</td>
</tr>
</tbody>
</table>

1.1 Orientierungsprüfung

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-104484</td>
<td>0</td>
</tr>
</tbody>
</table>
1.2 Bachelorarbeit

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-101720</td>
<td>Modul Bachelorarbeit</td>
</tr>
</tbody>
</table>

Voraussetzungen

Studierende hat Modulprüfungen im Umfang von 120 LP erfolgreich abgelegt!

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

1.3 Berufspädagogik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-100612</td>
<td>Berufspädagogische Grundlagen</td>
</tr>
<tr>
<td>M-GEISTSOZ-100639</td>
<td>Organisation und Handlungsfelder der beruflichen Bildung</td>
</tr>
<tr>
<td>M-GEISTSOZ-100640</td>
<td>Didaktik und Methodik</td>
</tr>
<tr>
<td>M-GEISTSOZ-100659</td>
<td>Planung beruflicher Bildung</td>
</tr>
<tr>
<td>M-GEISTSOZ-100672</td>
<td>Praxis des beruflichen Lehrens und Lernens</td>
</tr>
</tbody>
</table>
1.4 Berufliche Fachrichtung (Hauptfach): Bautechnik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-100889 Orientierungsprüfung Bautechnik</td>
<td>0 LP</td>
</tr>
<tr>
<td>M-BGU-101745 Statik starrer Körper</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-BGU-101746 Festigkeitslehre</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101716 Analysis und Lineare Algebra</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101714 Integralrechnung und Funktionen mehrerer Veränderlicher</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-BGU-101750 Baustoffe</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-BGU-101751 Baukonstruktionen</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-BGU-101752 Baustatik</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-BGU-103696 Grundlagen des Stahlbetonbaus</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-BGU-101761 Technisches Darstellen</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-103697 Grundlagen des Stahl- und Holzbau</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich Bautechnik (Wahl: mind. 17 LP)

<table>
<thead>
<tr>
<th>Wahlpflichtbereich Bautechnik (Wahl: mind. 17 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BGU-101747 Dynamik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-BGU-101748 Hydromechanik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MATH-101712 Differentialgleichungen</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-BGU-101749 Angewandte Statistik</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-BGU-101756 Geologie im Bauwesen</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101760 Umweltphysik / Energie</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101759 Bauchemie</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-103743 Planungsmethodik</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101755 Projektmanagement</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101763 Laborpraktikum</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101754 Technologie und Management im Baubetrieb</td>
<td>11 LP</td>
</tr>
<tr>
<td>M-BGU-101757 Bauinformatik I</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-101758 Bauinformatik II</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-103698 Geotechnisches Ingenieurwesen</td>
<td>11 LP</td>
</tr>
<tr>
<td>M-BGU-103486 Mobilität und Infrastruktur</td>
<td>12 LP</td>
</tr>
<tr>
<td>M-BGU-103752 Vermessungskunde für Bauingenieure und Geowissenschaftler</td>
<td>2 LP</td>
</tr>
<tr>
<td>M-BGU-105335 Gewerke und Technik im schlüsseligen Hochbau</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Die Erstverwendung ist ab 01.04.2020 möglich.
1.5 Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-102340</td>
<td>Orientierungsprüfung Elektrotechnik</td>
</tr>
<tr>
<td>M-MATH-101731</td>
<td>Höhere Mathematik I</td>
</tr>
<tr>
<td>M-MATH-101732</td>
<td>Höhere Mathematik II</td>
</tr>
<tr>
<td>M-MATH-101738</td>
<td>Höhere Mathematik III</td>
</tr>
<tr>
<td>M-PHYS-101684</td>
<td>Experimentalphysik</td>
</tr>
<tr>
<td>M-ETIT-102102</td>
<td>Digitaltechnik</td>
</tr>
<tr>
<td>M-ETIT-104539</td>
<td>Informationstechnik I</td>
</tr>
<tr>
<td>M-ETIT-102113</td>
<td>Elektrotechnisches Grundlagenpraktikum</td>
</tr>
<tr>
<td>M-ETIT-102124</td>
<td>Elektrische Maschinen und Stromrichter</td>
</tr>
<tr>
<td>M-ETIT-102181</td>
<td>Systemdynamik und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtbereich Elektrotechnik (Wahl: mind. 16 LP)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-100367</td>
<td>Informationstechnik in der industriellen Automation</td>
</tr>
<tr>
<td>M-ETIT-100407</td>
<td>Erzeugung elektrischer Energie</td>
</tr>
<tr>
<td>M-ETIT-100398</td>
<td>Hochleistungsstromrichter</td>
</tr>
<tr>
<td>M-ETIT-102156</td>
<td>Elektroenergiesysteme</td>
</tr>
<tr>
<td>M-ETIT-100533</td>
<td>Leistungselektronik</td>
</tr>
<tr>
<td>M-ETIT-100572</td>
<td>Elektrische Energienetze</td>
</tr>
<tr>
<td>M-ETIT-100395</td>
<td>Regelung elektrischer Antriebe</td>
</tr>
<tr>
<td>M-ETIT-102104</td>
<td>Wahrscheinlichkeitstheorie</td>
</tr>
<tr>
<td>M-ETIT-102652</td>
<td>Messtechnik</td>
</tr>
<tr>
<td>M-ETIT-100410</td>
<td>Elektronische Systeme und EMV</td>
</tr>
<tr>
<td>M-ETIT-102129</td>
<td>Grundlagen der Hochfrequenztechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-104465</td>
<td>Elektronische Schaltungen</td>
</tr>
<tr>
<td>M-ETIT-104519</td>
<td>Lineare Elektrische Netze</td>
</tr>
<tr>
<td>M-ETIT-104525</td>
<td>Signale und Systeme</td>
</tr>
</tbody>
</table>
1.6 Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-102340 Orientierungsprüfung Elektrotechnik</td>
<td>0 LP</td>
</tr>
<tr>
<td>M-MATH-101731 Höhere Mathematik I</td>
<td>11 LP</td>
</tr>
<tr>
<td>M-MATH-101732 Höhere Mathematik II</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MATH-101738 Höhere Mathematik III</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101684 Experimentalphysik</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-ETIT-102102 Digitaltechnik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-ETIT-104539 Informationstechnik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-ETIT-102113 Elektrotechnisches Grundlagenpraktikum</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-ETIT-102103 Nachrichtentechnik I</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-ETIT-102104 Wahrscheinlichkeitslehre</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtbereich Elektrotechnik (Wahl: mind. 17 LP)

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-102181 Systemdynamik und Regelungstechnik</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-ETIT-100454 Mikrosystemtechnik</td>
<td>3 LP</td>
</tr>
<tr>
<td>M-ETIT-100537 Systems and Software Engineering</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-ETIT-100453 Hardware/Software Co-Design</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-ETIT-102652 Messstechnik</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-ETIT-103264 Informationsfusion</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-ETIT-105274 Nachrichtentechnik II / Communications Engineering II</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-104465 Elektronische Schaltungen</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-ETIT-104519 Lineare Elektrische Netze</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-ETIT-104525 Signale und Systeme</td>
<td>7 LP</td>
</tr>
</tbody>
</table>

1.7 Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"

<table>
<thead>
<tr>
<th>Wahlpflichtbereich Metalltechnik (Wahl: 2 Bestandteile)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-104801 Elektrotechnik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105449 Informatik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105450 Maschinen und Prozesse</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105451 Mess- und Regelungstechnik</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-105474 Orientierungsprüfung Metalltechnik</td>
<td>0 LP</td>
</tr>
<tr>
<td>M-MATH-100280 Höhere Mathematik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MATH-100281 Höhere Mathematik II</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100279 Technische Mechanik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100284 Technische Mechanik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-101299 Maschinenkonstruktionslehre</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-102386 Technische Thermodynamik und Wärmeübertragung</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102549 Fertigungsprozesse</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-MACH-102565 Strömungslehre</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102589 Schwerpunkt: Produktionssysteme</td>
<td>12 LP</td>
</tr>
</tbody>
</table>
1.8 Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"

<table>
<thead>
<tr>
<th>Wahlpflichtbereich Metalltechnik (Wahl: 2 Bestandteile)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-104801 Elektrotechnik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105449 Informatik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105450 Maschinen und Prozesse</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105451 Mess- und Regelungstechnik</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-105474 Orientierungsprüfung Metalltechnik</td>
<td>0 LP</td>
</tr>
<tr>
<td>M-MATH-100280 Höhere Mathematik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MATH-100281 Höhere Mathematik II</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100279 Technische Mechanik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100284 Technische Mechanik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-101299 Maschinenkonstruktionslehre</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-102386 Technische Thermodynamik und Wärmeübertragung I</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102549 Fertigungsprozesse</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-MACH-102565 Strömungslehre</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102818 Schwerpunkt: Kraftfahrzeugtechnik</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

1.9 Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"

<table>
<thead>
<tr>
<th>Wahlpflichtbereich Metalltechnik (Wahl: 2 Bestandteile)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ETIT-104801 Elektrotechnik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105449 Informatik</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105450 Maschinen und Prozesse</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-105451 Mess- und Regelungstechnik</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-105474 Orientierungsprüfung Metalltechnik</td>
<td>0 LP</td>
</tr>
<tr>
<td>M-MATH-100280 Höhere Mathematik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MATH-100281 Höhere Mathematik II</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100279 Technische Mechanik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>M-MACH-100284 Technische Mechanik II</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-MACH-101299 Maschinenkonstruktionslehre</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MACH-102386 Technische Thermodynamik und Wärmeübertragung I</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102549 Fertigungsprozesse</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>M-MACH-102565 Strömungslehre</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MACH-102816 Schwerpunkt: Grundlagen der Energietechnik</td>
<td>12 LP</td>
</tr>
</tbody>
</table>

1.10 Wahlpflichtfach (2. Unterrichtsfach): Geschichte mit Gemeinschaftskunde

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-101577 Grundlagen der Gemeinschaftskunde</td>
<td>10 LP</td>
</tr>
<tr>
<td>M-GEISTSOZ-105138 Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik)</td>
<td>10 LP</td>
</tr>
</tbody>
</table>
1.11 Wahlpflichtfach (2. Unterrichtsfach): Mathematik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101306 Analysis 1 und 2</td>
<td>17 LP</td>
</tr>
<tr>
<td>M-MATH-101313 Proseminar Mathematik</td>
<td>3 LP</td>
</tr>
</tbody>
</table>

1.12 Wahlpflichtfach (2. Unterrichtsfach): Physik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101682 Grundlagen der Physik</td>
<td>20 LP</td>
</tr>
</tbody>
</table>

1.13 Wahlpflichtfach (2. Unterrichtsfach): Sport

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-100922 Einführung Sportwissenschaft</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-GEISTSOZ-103280 Bewegung und Training - IngPäd</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-GEISTSOZ-103281 Theorie und Praxis der Sportarten - Basiskurse für IngPäd</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-GEISTSOZ-101701 Grundlagen Mannschaftsport</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

1.14 Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-WIWI-105768 Management und Marketing</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-WIWI-105769 Finanzierung und Rechnungswesen</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-WIWI-105770 Produktions, Logistik und Wirtschaftsinformatik</td>
<td>5 LP</td>
</tr>
<tr>
<td>M-WIWI-101431 Volkswirtschaftslehre</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Hinweise zur Verwendung

Die Erstverwendung ist ab 01.10.2021 möglich.

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746 Wahlpflichtmodul</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102618 Schwerpunkt: Produktionstechnik</td>
<td>16 LP</td>
</tr>
</tbody>
</table>

1.15 Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"

1.16 Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746 Wahlpflichtmodul</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102607 Schwerpunkt: Kraftfahrzeugtechnik</td>
<td>16 LP</td>
</tr>
</tbody>
</table>
1.17 Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102623</td>
<td>16 LP</td>
</tr>
</tbody>
</table>

1.18 Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme (ENAT)"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102601</td>
<td>16 LP</td>
</tr>
</tbody>
</table>

1.19 Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "System- und Informationstechnik (SIT)"

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MACH-102746</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MACH-102601</td>
<td>16 LP</td>
</tr>
</tbody>
</table>

1.20 Betriebspraktikum

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-100643</td>
<td>7 LP</td>
</tr>
</tbody>
</table>

1.21 Berufspädagogisches Praktikum bzw. Schulpraktikum

<table>
<thead>
<tr>
<th>Wahlpflichtblock Berufspädagogisches Praktikum bzw. Schulpraktikum (Wahl: 1 Bestandteil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-104760 Berufspädagogisches Praktikum</td>
</tr>
<tr>
<td>M-GEISTSOZ-104761 Schulpraktikum</td>
</tr>
</tbody>
</table>

1.22 Zusatzleistungen

<table>
<thead>
<tr>
<th>Zusatzleistungen (Wahl: max. 30 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-102073 Weitere Leistungen</td>
</tr>
</tbody>
</table>
1.23 Mastervorzug

Wahlinformationen
Bitte beachten Sie: Eine als Mastervorzugsleistung angemeldete Erfolgskontrolle kann nach dem erfolgreichen Ablegen aller für den Bachelorabschluss erforderlichen Studien- und Prüfungsleistungen nur als Mastervorzugsleistung erbracht werden, solange Sie im Bachelorstudiengang immatrikuliert sind. Weiter darf noch keine Masterzulassung vorliegen und gleichzeitig das Mastersemester begonnen haben.

Dies bedeutet, dass ab Bekanntgabe der Zulassung zum Masterstudium und Beginn des Mastersemesters die Teilnahme an der Prüfung als regulärer erster Prüfungsversuch im Rahmen des Masterstudiums erfolgt.

<table>
<thead>
<tr>
<th>Mastervorzugsleistungen (Wahl: max. 30 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-GEISTSOZ-101987 Erfolgskontrollen</td>
<td>30 LP</td>
</tr>
</tbody>
</table>

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In den folgenden Bereichen müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein:
 - Berufliche Fachrichtung (Hauptfach): Bautechnik
 - Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme"
 - Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik"
 - Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"
 - Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"
 - Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"
 - Berufspädagogik
 - Berufspädagogisches Praktikum bzw. Schulpraktikum
 - Betriebspraktikum
 - Wahlpflichtfach (2. Unterrichtsfach): Geschichte mit Gemeinschaftskunde
 - Wahlpflichtfach (2. Unterrichtsfach): Mathematik
 - Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme (ENAT)"
 - Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"
 - Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"
 - Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"
 - Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "System- und Informationstechnik (SIT)"
 - Wahlpflichtfach (2. Unterrichtsfach): Physik
 - Wahlpflichtfach (2. Unterrichtsfach): Sport
 - Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre
2.1 Modul: Analysis 1 und 2 [M-MATH-101306]

Verantwortung: Prof. Dr. Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Mathematik

Leistungspunkte: 17
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 2 Semester
Level: 3
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtleistung</th>
<th>Inhalt</th>
<th>Noten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106335</td>
<td>Analysis 1 - Klausur</td>
<td>9 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-106336</td>
<td>Analysis 2 - Klausur</td>
<td>9 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-102235</td>
<td>Analysis 1 Übungsschein</td>
<td>0 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
<tr>
<td>T-MATH-102236</td>
<td>Analysis 2 Übungsschein</td>
<td>0 LP Frey, Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form von zwei schriftlichen Prüfungen von jeweils 120 Minuten Dauer sowie den beiden bestandenen Studienleistungen aus den Übungen.

Voraussetzungen
Keine

Qualifikationsziele
Inhalt

- Vollständige Induktion, reelle und komplexe Zahlen,
- Konvergenz von Folgen, Zahlenreihen, Potenzreihen
- Elementare Funktionen
- Stetigkeit reeller Funktionen
- Differentiation reeller Funktionen, Satz von Taylor
- Integration reeller Funktionen, uneigentliches Integral
- Konvergenz von Funktionenfolgen- und reihen
- Normierte Vektorräume, topologische Grundbegriffe, Fixpunktsatz von Banach
- Mehrdimensionale Differentiation, implizit definierte Funktionen, Extrema ohne/mit Nebenbedingungen
- Kurvenintegral, Wegunabhängigkeit
- Lineare gewöhnliche Differentialgleichungen, Trennung der Variablen, Satz von Picard und Lindelöf.

Zusammensetzung der Modulnote
Die Modulnote ist die Durchschnittsnote der beiden Teilprüfungen.
Beide Teilprüfungen sind getrennt zu bestehen.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 540 Stunden
Präsenzzeit: 240 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 300 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
2.2 Modul: Analysis und Lineare Algebra [M-MATH-101716]

Verantwortung: Prof. Dr. Marlis Hochbruck
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

T-MATH-103325 Analysis und Lineare Algebra - Klausur 9 LP Grimm, Hochbruck, Neher

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (90 min.)

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Grundlagen und Hilfsmittel
- Aussagenlogik
- Vektor- und Matrizenrechnung
- lineare Gleichungssysteme
- Eigenwerte und Eigenvektoren von Matrizen
- Folgen und Reihen
- reellwertige Funktionen
- Stetigkeit
- Differentialrechnung einer Veränderlichen
- Extremwerte
- Parameterdarstellung ebener Kurven
- Approximation und Interpolation

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 270 Std.
2.3 Modul: Angewandte Statistik (bauiBGP07-STATS) [M-BGU-101749]

Verantwortung: Dr. Frank Hase
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 3
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 2
Version 1

Pflichtbestandteile
T-BGU-103381 Angewandte Statistik 3 LP Hase

Erfolgskontrolle(n)
- Teilleistung T-BGU-103381 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden besitzen ein grundlegendes Verständnis über die allgemeinen Grundlagen und die Anwendung statistischer Methoden im Bereich des Bauingenieurwesens. Mit diesen Kenntnissen können sie für bestimmte fachliche Fragestellungen geeignete statistische Methoden auswählen und deren Anwendbarkeit beurteilen, eigene Berechnungen durchführen und die Ergebnisse interpretieren.

Inhalt
- Auswertung von Stichproben (statistische Kennwerte und Häufigkeitsverteilung)
- Beschreibung der Grundgesamtheit über Wahrscheinlichkeitsfunktionen
- ausgewählte Wahrscheinlichkeitsfunktionen für diskrete und stetige Zufallsvariable
- Konfidenzintervalle und Hypothesentest
- zweidimensionale Wahrscheinlichkeitsverteilung und Regressionsanalyse

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std.
- Prüfungsvorbereitung: 45 Std.

Summe: 90 Std.

Empfehlungen
keine

Literatur
Kreyszig, E.: Statistische Methoden und ihre Anwendung; Verlag Vandenhoeck und Ruprecht
Sachs, L. (1969): Statistische Auswertemethoden; Springer-Verlag
2.4 Modul: Bauchemie (bauBGW1-BCHEM) [M-BGU-101759]

Verantwortung: Dr. rer. nat. Andreas Bogner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103400 | Bauchemie | 2 LP Bogner |

Erfolgskontrolle(n)
- Teilleistung T-BGU-103400 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können grundlegende Begriffe und Zusammenhänge aus der allgemeinen und anorganischen Chemie sowie spezielle Zusammenhänge, welche das Bauwesen betreffen, benennen und beschreiben.

Inhalt
- Atombau und Periodensystem der Elemente
- chemische Bindungen
- Baubindemittel

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen: 15 Std.
- Testvorbereitung: 15 Std.

Summe: 60 Std.

Empfehlungen
keine

Literatur
Erwin Riedel: Allgemeine und Anorganische Chemie, Gruyter Verlag
2.5 Modul: Bauinformatik I (bauIBGP14-BINF1) [M-BGU-101757]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte
- **2**

Notenskala
- best./nicht best.

Turnus
- Jedes Wintersemester

Dauer
- 1 Semester

Sprache
- Deutsch

Level
- 1

Version
- 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-BGU-103396</th>
<th>Bauinformatik I</th>
<th>2 LP</th>
<th>Uhlmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103397</td>
<td>Programmieraufgaben Bauinformatik I</td>
<td>0 LP</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103397 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-103396 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden erhalten ein grundlegendes Verständnis für die digitale Datenverarbeitung. Sie sind in der Lage, Problemstellungen der Informationsverarbeitung selbständig zu bearbeiten, und sich in neue Computeranwendung einzuarbeiten. Sie sind befähigt, eigene Computerprogramme zu erstellen.

Inhalt
- Grundlagen der digitalen Datenverarbeitung: Information und Kodierung, Datenstrukturen, Algorithmen, Rechneraufbau
- Einführung in das Programmieren: Grundlegende Elemente höherer Programmiersprachen, prozedurales Programmieren am Beispiel einer gängigen Programmiersprache
- Softwareanwendungen: Betriebssysteme, ausgewählte Computeranwendungen mit Relevanz für Ingenieure

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 30 Std.

Selbststudium:
- Ausarbeitung Programmieraufgaben: 15 Std.
- Testvorbereitung: 15 Std.

Summe: 60 Std.

Empfehlungen
keine

Literatur
- J.G. Brookshear, "Computer Science: An Overview", Pearson, 2009;
- J. Liberty and B. Jones, "Teach yourself C++ in 21 days", Sams, 2005;
- RRZN, "Die Programmiersprache C", 2008 (Skriptenverkauf am SCC)
- RRZN, "C++ für C Programmierer", 2005 (Skriptenverkauf am SCC)
2.6 Modul: Bauinformatik II (bauiBGW7-BINF2) [M-BGU-101758]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103398 | Bauinformatik II | 2 LP | Uhlmann |
| T-BGU-103399 | Programmieraufgaben Bauinformatik II | 0 LP | Uhlmann |

Erfolgskontrolle(n)
- Teilleistung T-BGU-103399 mit unbenoteter Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-103398 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können die für die digitale Datenverarbeitung verwendeten Algorithmen beschreiben. Sie sind in der Lage, ihre Programmierkenntnisse über die objektorientierte Programmierung an praktischen Beispielen anzuwenden.

Inhalt
- Einführung in das objekt-orientierte Programmieren: grundlegende Elemente objekt-orientierter Programmiersprachen und deren Realisierung in einer weit verbreiteten höheren Programmiersprache
- Übungen zur Implementierung von gängigen Algorithmen, Anwendungen auf Probleme im Ingenieurbereich

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung: 30 Std.

Selbststudium:
- Ausarbeitung Programmieraufgaben: 15 Std.
- Testvorbereitung: 15 Std.

Summe: 60 Std.

Empfehlungen
Bauinformatik I sollte belegt worden sein.

Literatur
2.7 Modul: Baukonstruktionen (bauiBGP10-BKONS) [M-BGU-101751]

Verantwortung:
- Prof. Dr.-Ing. Frank Dehn
- Prof. Dr.-Ing. Philipp Dietsch

Einrichtung:
KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Noten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103384</td>
<td>3</td>
<td>Bauphysik</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T-BGU-103386</td>
<td>6</td>
<td>Baukonstruktionslehre</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103384 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1, Teil der Orientierungsprüfung nach § 8 Abs. 1
- Teilleistung T-BGU-103386 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung.

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Wärme- und Feuchtetransportmechanismen
- winterlicher und sommerlicher Wärmeschutz
- Schimmelpilzbildung, Tauwasserschutz
- Grundlagen des baulichen Schall- und Brandschutzes
- Sicherheitskonzept und Grundlagen der Bemessung
- Tragsysteme und Lastannahmen
- Dach-, Decken- und Wandkonstruktionen
- Gründungen und Fundamente

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Bauphysik Vorlesung, Übung: 30 Std.
- Baukonstruktionslehre Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen Bauphysik: 15 Std.
- Prüfungsvorbereitung Bauphysik: 45 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Baukonstruktionslehre: 15 Std.
- Prüfungsvorbereitung Baukonstruktionslehre: 75 Std.

Summe: 270 Std.
Empfehlungen
keine

Literatur
Skript "Bauphysik"
Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen. Wärmeschutz, Feuchteschutz, Schallschutz. Werner Verlag
Skript "Baukonstruktionslehre"
Lehrbuch der Hochbaukonstruktionen (Hrsg.: Cziesielski, Erich)
Baukonstruktion im Planungsprozess (Hrsg.: Franke, Lutz)
Porenbetonhandbuch
Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 1 - Berechnungsgrundlagen
Informationsdienst Holz, Holzbau Handbuch, Reihe 2, Teil 3 - Dachbauteile, Folge 2 - Hausdächer
2.8 Modul: Baustatik (bauIBFP1-BSTAT) [M-BGU-101752]

Verantwortung: Prof. Dr.-Ing. Steffen Freitag

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-BGU-103387</th>
<th>Baustatik I</th>
<th>5 LP</th>
<th>Freitag</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103388</td>
<td>Baustatik II</td>
<td>5 LP</td>
<td>Freitag</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103387 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-103388 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung.

Voraussetzungen

keine

Qualifikationsziele

Inhalt
Berechnung statisch bestimmter und unbestimmter ebener und räumlicher Stabtragwerke:

- Idealisierungen zur Modellbildung
- Tragverhalten
- Schnittgrößen
- Diskrete Verschiebungen
- Kontrollen
- Symmetrie
- Anwendung von Statikprogrammen
- Kraftgrößenverfahren
- Verschiebungsgrößenverfahren
- Einflusslinien
- Finite Elemente (FE) Methode am Beispiel des ebenen Fachwerkes
- Vorspannung

Ausblick: Flächentragwerke, FE-Modellierung, Nichtlinearitäten

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen

keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Baustatik I Vorlesung, Übung, Tutorium: 75 Std.
- Baustatik II Vorlesung, Übung, Tutorium: 75 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Baustatik I: 15 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Baustatik II: 15 Std.
- Prüfungsvorbereitung Baustatik I: 60 Std.
- Prüfungsvorbereitung Baustatik II: 60 Std.

Summe: 300 Std.

Empfehlungen
keine

Literatur
Vorlesungsmanuskript Baustatik I
Vorlesungsmanuskript Baustatik II
2.9 Modul: Baustoffe (bauiBGP09-BSTOF) [M-BGU-101750]

Verantwortung: Prof. Dr.-Ing. Frank Dehn
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

Leistungspunkte	Notenskala	Turnus	Dauer	Sprache	Level	Version
12 | Zehntelnoten | Jedes Sommersemester | 2 Semester | Deutsch | 2 | 1

Pflichtbestandteile
- T-BGU-103382 Baustoffkunde
- T-BGU-103383 Konstruktionsbaustoffe

Erfolgskontrolle(n)
- Teilleistung T-BGU-103382 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1, Teil der Orientierungsprüfung nach § 8 Abs. 1
- Teilleistung T-BGU-103383 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen
keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Baustoffkunde Vorlesung, Übung: 30 Std.
- Konstruktionsbaustoffe Vorlesung, Übung: 90 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen Baustoffkunde: 15 Std.
- Prüfungsvorbereitung Baustoffkunde: 45 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Konstruktionsbaustoffe: 60 Std.
- Prüfungsvorbereitung Konstruktionsbaustoffe: 120 Std.

Summe: 360 Std.

Empfehlungen
keine
Literatur
Skriptum "Baustoffkunde und Konstruktionsbaustoffe"
2.10 Modul: Berufspädagogische Grundlagen (BPäd-Grdlg) [M-GEISTSOZ-100612]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Berufspädagogik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus</th>
<th>Dauer 1 Semester</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>Jedes Wintersemester</td>
<td></td>
<td>Deutsch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Leistungspunkte</th>
<th>Semester</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-100990</td>
<td>Einführung in die Berufspädagogik</td>
<td>4 LP</td>
<td>BPäd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-GEISTSOZ-100991</td>
<td>Übung zur Vorlesung: Einführung in die Berufspädagogik</td>
<td>2 LP</td>
<td>Stöckel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-GEISTSOZ-108355</td>
<td>Selbstverständnis der Berufspädagogik</td>
<td>4 LP</td>
<td>BPäd</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Zum Bestehen des Moduls sind folgende Studien- und Prüfungsleistungen nachzuweisen:
1. die Prüfungsleistung zur Vorlesung „Einführung in die Berufspädagogik“ (4 LP) erstreckt sich auf die regelmäßige Teilnahme an einem lehrveranstaltungsbegleitenden Wiki sowie den Anfertigungen von zwei Essays zu vorgegebenen Fragestellungen im Umfang von jeweils ca. 3 Seiten;
2. eine Studienleistung zum Seminar „Übung zur VL: Einführung in die Berufspädagogik“ (2 LP) in Form eines Referats, thematisch ausgewählt aus einer Liste von vorgegebenen Themen, mit einer Dauer von ca. 30 Minuten;
3. die Prüfungsleistung zu einem Seminar „Selbstverständnis der Berufspädagogik“ (4 LP) ist in Form einer schriftlichen Ausarbeitung im Umfang von ca. 6-10 Seiten sowie einem aktiven Beitrag im Seminar zu erbringen.

Voraussetzungen
keine

Qualifikationsziele
Fachliche Kompetenzen:
Die Studierenden können:
- wesentliche Begriffe der Berufspädagogik sachgerecht erläutern und in den passenden Kontext und Diskurs einbringen;
- auf Basis der entwickelten fachlichen Vorstellung der relevanten Strukturen der Berufsbildung darin die Berufspädagogik als mitgestaltende Disziplin verorten;
- über das erarbeitete berufspädagogische Wissen zur beruflichen Aus- und Weiterbildung eigenständig sachgerechte Darstellungen formulieren;
- die Hauptgebiete der Berufsbildung und Berufspädagogik (Arbeit, Beruf, Bildung) überblicken und verschiedene relevante Einzelthemen mit berufsbildungsgeschichtlichem, -systematischem und oder strukturellem Bezug einordnen und für die vertiefte Bearbeitung im weiteren Verlauf des Studiums für schriftliche Ausarbeiten und Fachgespräche anwenden;
- ein Spektrum ausgewählter und bedeutender Positionen und Perspektiven in der berufspädagogischen Disziplin nachzuvollziehen, zuordnen, interpretieren und auf historische wie aktuelle Themen übertragen.

Überfachliche Kompetenzen:
Die Studierenden können:
- Fachliteratur auf wissenschaftliche Weise rezipieren, komprimieren und für den Gebrauch im Zusammenhang spezifischer Aufgabenstellungen aufbereiten;
- komplexe, theoretische und aus heterogenem zeitlichem, räumlichem und ideologischem Hintergrund stammende Positionen nachvollziehen, einordnen und sachlich neutral erörtern;
- in unterschiedlichen Konstellationen (Vorlesung, Fachgespräch, Arbeitsgruppe) akademische Inhalte identifizieren, erläutern und anwenden.

Inhalt
Die Einführung in die Berufspädagogik (WS) thematisiert die Aufgaben und Themen der Berufspädagogik, die geschichtliche Entwicklung der Berufe und der Berufsbildung, aktuelle Strukturen im Bildungs- und Beschäftigungssystem, die Sozialisation durch Arbeit und Beruf, Berufswahl und berufliche Entwicklung, das Spannungsfeld individueller und gesellschaftlicher Ansprüche in der Bildung, die Institutionen und Institutionenentwicklung der beruflichen Bildung im nationalen und internationalen Rahmen, die schulische Berufsbildung, betriebliche Ausbildung und das Lernen in der Arbeit, die Situation der betrieblichen, außer- und überbetrieblichen Ausbildungs- und Weiterbildungseinrichtungen, die berufliche Fort- und Weiterbildung und das Lebensbegleitende Lernen, Aspekte der Prüfungen, Zertifizierung und Durchlässigkeit im (beruflichen) Bildungswesen, Aufgaben und Themen der Berufsbildungsforschung sowie kommende Herausforderungen der beruflichen Bildung.

Zusammensetzung der Modulnote

Arbeitsaufwand

<table>
<thead>
<tr>
<th>Präsenzstudienzeiten</th>
<th>90 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwesenheit</td>
<td></td>
</tr>
<tr>
<td>Selbststudienzeiten</td>
<td></td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>120 h</td>
</tr>
<tr>
<td>Prüfung(en) / Erfolgskontrolle(n)</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Summe 300 h

Empfehlungen
keine
2.11 Modul: Berufspädagogisches Praktikum [M-GEISTSOZ-104760]

Einrichtung: Universität gesamt
Bestandteil von: Berufspädagogisches Praktikum bzw. Schulpraktikum

Leistungspunkte: 5
Notenskala: best./nicht best.
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-GEISTSOZ-109720 Berufspädagogisches Praktikum (4 Wochen) 5 LP

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele
Fachliche Kompetenzen:
Die Studierenden können
- die wesentlichen Anforderungen an Lehrkräfte im berufsbildenden Bereich sowie deren Aufgaben benennen und erläutern;
- heterogene Lernvoraussetzungen bei Schülerinnen und Schülern bzw. Auszubildenden erkennen und sie bei der Planung und Analyse von Lehr-Lern-Arrangements anhand des Berliner Modells berücksichtigen;
- fachgerechte Hospitationen durchführen, die Struktur von Lehr-Lern-Arrangements aufdecken und Lehr-Lern-Arrangements (z.B. Unterricht) pädagogisch analysieren;
- eigenständig spezifische Sequenzen eines Lehr-Lern-Arrangements planen und diese unter Anleitung durchführen
- heterogene Anforderungen an Berufsbildungspersonal beschreiben.

Überfachliche Kompetenzen:
Die Studierenden können
- schulische Spannungsfelder nennen und beschreiben
- sich eigeninitiativ in organisationale Rahmenbedingungen und/oder spezifische Aufgabengebiete einarbeiten

Inhalt
Im Berufspädagogischen Praktikum erhalten die Studierenden Einblicke in die Organisation beruflicher Bildungseinrichtungen, hospitieren berufliche Bildungsmaßnahmen und führen erste berufliche Bildungsmaßnahmen unter Anleitung durch. Sie erhalten Einblick in die Anforderungen und Tätigkeiten des Berufsbildungspersonals und erkunden eigeninitiativ spezifische Aufgabengebiete.

Zusammensetzung der Modulnote
Das Modul ist unbenotet.

Empfehlungen
Erfolgfreier Abschluss der Module "Berufspädagogische Grundlagen" und "Organisation und Handlungsfelder der beruflichen Bildung"

2.12 Modul: Betriebspraktikum (BPäd-BpBetriebsprakt) [M-GEISTSOZ-100643]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Betriebspraktikum

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-109865</td>
<td>Nachbereitendes Seminar zum Betriebspraktikum</td>
</tr>
<tr>
<td>T-GEISTSOZ-109866</td>
<td>Betriebspraktikum</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Das Modul schließt mit einer Studienleistung ab und ist dementsprechend unbenotet.
Die Erfolgskontrolle besteht aus folgenden Studien- und Prüfungsleistungen:
1. 6 Wochen Betriebspraktikum in einschlägigem Praktikumsbetrieb
2. Nachbereitendes Seminar zum Betriebspraktikum (1 LP)

Voraussetzungen

keine

Qualifikationsziele

Fachliche und überfachliche Kompetenzen:

Die Studierenden können
- einfachere Arbeitsaufgaben der Beruflichen Fachrichtung selbständig sowie komplexere Arbeitsaufgaben der Beruflichen Fachrichtung unter Anleitung durchführen
- anderen einen Einblick in fachpraktische Tätigkeiten und ihre Praktikumserfahrungen geben
- selbständig Ordnungsmittel der beruflichen Bildung (z. B. Rahmenlehrpläne) recherchieren und diese mit ihren Praktikumserfahrungen in Beziehung setzen
- ihre eigenen Praktikumserfahrungen reflektieren, v.a. im Hinblick auf die Verwendbarkeit in ihrem Studium und ihrer zukünftigen berufspädagogischen Tätigkeit

Inhalt

6 Wochen Betriebspraktikum in einschlägigem Praktikumsbetrieb

Arbeitsaufwand

Präsenzstudienzeiten
Anwesenheit 30 h
Praktikum 240 h
Selbststudienzeiten
Vor- und Nachbereitung 30 h
Prüfung(en) / Erfolgskontrolle(n) 60 h
Summe 360 h
2.13 Modul: Bewegung und Training - IngPäd [M-GEISTSOZ-103280]

Einrichtung: KiT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Sport

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus Jedes Wintersemester</th>
<th>Dauer 1 Semester</th>
<th>Sprache Deutsch</th>
<th>Level 3</th>
<th>Version 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-103285</td>
<td>Trainingswissenschaft</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-GEISTSOZ-103286</td>
<td>PS Anwendung Trainingswissenschaft</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
2.14 Modul: Didaktik und Methodik (Päd-DidBB) [M-GEISTSOZ-100640]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Berufspädagogik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnumber</th>
<th>Unterrichtsfach</th>
<th>Leistungspunkte</th>
<th>Evaluator</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-101098</td>
<td>Pädagogische Psychologie</td>
<td>2 LP</td>
<td>Ebner-Priemer</td>
</tr>
<tr>
<td>T-GEISTSOZ-108353</td>
<td>Lehr-/Lernkonzepte</td>
<td>6 LP</td>
<td>Gidion</td>
</tr>
<tr>
<td>T-GEISTSOZ-108354</td>
<td>Didaktik und Methodik</td>
<td>2 LP</td>
<td>Gidion</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Zum erfolgreichen Bestehen des Moduls sind außerdem folgende Studienleistungen nachzuweisen:
1. Studienleistung zur Vorlesung „Einführung in die Pädagogische Psychologie“ (2 LP), bestehend aus einer Klausur im Umfang von ca. 90 Minuten.
2. Studienleistung zur Vorlesung „Didaktik und Methodik“ (2 LP), bestehend aus einer Klausur im Umfang von ca. 90 Minuten oder der lehrveranstaltungsbegleitenden Erstellung eines themenspezifischen Textes zu einem didaktischen Konzept.

Voraussetzungen
Keine

Qualifikationsziele

Fachliche Kompetenzen:
Die Studierenden können
- die lernwissenschaftlichen, geschichtlichen, arbeitsanforderungsbezogenen und theoriebasierten Grundlagen der Didaktik und Methodik der beruflichen Bildung in didaktische Gestaltung umsetzen;
- die drei Grundformen didaktischen Handelns – instruktiv, konstruktivistisch und selbstorganisiert geprägte Lehr-Lern-Arrangements – in differenzierter Weise analysieren und die damit verbundenen Konzepte in die pädagogische Praxis einbringen;
- das erworbene Wissen über wesentliche psychologische Grundlagen der Pädagogik in ihr didaktisches Denken und Handeln einbringen und aus der Berufspädagogik heraus auf Inhalte und Systematiken der pädagogischen Psychologie zurückgreifen;
- spezifische Anwendungsgebiete der eigenen akademischen Tätigkeit aus der pädagogischen Psychologie heraus professorgenrecht beurteilen und angehen;
- theoriebasiertes Wissen über die Didaktik der beruflichen Bildung in angewandten Lehr-Lern-Arrangements konzipieren, erproben und evaluieren.

Überfachliche Kompetenzen:
Die Studierenden können
- wissenschaftliche Konzepte aus dem didaktischen und lernwissenschaftlichen Bereich einordnen, interpretieren und zuordnen;
- unterschiedliche Positionen und Erkenntnisse in der Didaktik der Berufsbildung erkennen, in ihren Wechselwirkungen einschätzen und mit Bezug auf die pädagogische Praxis konzeptionell kombinieren;
- die wissenschaftlichen Ansätze der pädagogischen Psychologie als interdisziplinären Bestandteil ihrer akademischen Kerndisziplinen integrieren und zuordnen;
- komplexe wissenschaftliche Hintergründe mit konkreten praktischen Bedingungen in Verbindung bringen und aufeinander beziehen.
Inhalt

Zusammensetzung der Modulnote
Die Gesamtnote des Moduls entspricht der Note der Modulprüfung.

Arbeitsaufwand
Präsenzstudienzeiten
Anwesenheit 60 h
Selbststudienzeiten
Vor- und Nachbereitung 60 h
Prüfung(en) / Erfolgskontrolle(n) 180 h

Summe 300 h

Empfehlungen
Keine
2.15 Modul: Differentialgleichungen [M-MATH-101712]

Verantwortung: Prof. Dr. Marlis Hochbruck
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungsrichtungen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103323</td>
<td>Differentialgleichungen - Klausur</td>
<td>4 LP</td>
<td>Jedes Wintersemester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (60 min.)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden erwerben grundlegende Kenntnisse über gewöhnliche Differentialgleichungen sowie analytische und numerische Lösungsmethoden und sie können die Grundtypen partieller Differentialgleichungen zweiter Ordnung und damit die mathematischen Grundlagen für das Verständnis von qualitativen und quantitativen Modellen aus der Ingenieurwissenschaft benennen und erläutern. Sie sind in der Lage, die behandelten Methoden bei der mathematischen Modellierung ingenieurwissenschaftlicher Probleme selbständig und sicher anzuwenden und das resultierende mathematische Problem mit den gewählten Hilfsmitteln zu lösen.

Inhalt

- gewöhnliche Differentialgleichungen
- lineare Differentialgleichungen
- Systeme von Differentialgleichungen
- elementar lösbare Differentialgleichungen
- Potenzreihenlösungen
- numerische Behandlung gewöhnlicher Differentialgleichungen
- Rand- und Eigenwertprobleme
- Fourier-Reihen
- Grundtypen und Lösungsverfahren partieller Differentialgleichungen zweiter Ordnung

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung, Tutorium: 45 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 30 Std.
- Prüfungsvorbereitung: 45 Std.

Summe: 120 Std.

Empfehlungen
2.16 Modul: Digitaltechnik [M-ETIT-102102]

Verantwortung: Prof. Dr.-Ing. Jürgen Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte: 6
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 1
Version: 1

Pflichtbestandteile

| T-ETIT-101918 | Digitaltechnik | 6 LP | Becker |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können die grundlegenden Verfahren der Digitaltechnik und der digitalen Informationsverarbeitung mit dem Schwerpunkt digitale Schaltungen benennen. Sie sind in der Lage Codierungen auf digitale Informationen anzuwenden und zu analysieren. Darüber hinaus kennen die Studierenden die mathematischen Grundlagen und können graphische und algebraische Verfahren für den Entwurf, die Analyse und die Optimierung digitaler Schaltungen und Automaten anwenden.

Inhalt

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)
1. Präsenzzeit in 23 Vorlesungen und 7 Übungen: 45Std.
2. Vor-/Nachbereitung der selbigen: 90Std. (~2 Std. pro Einheit)
3. Klausurvorbereitung und Präsenz in selbiger: 30 + 2 Std.
2.17 Modul: Dynamik (bauiBGP03-TM3) [M-BGU-101747]

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-111041</td>
<td>Prüfungsvorleistung Dynamik</td>
<td>0 LP</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T-BGU-103379</td>
<td>Dynamik</td>
<td>6 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-111041 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-103379 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung.

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Kinematik des Massenpunktes
- Kinetik des Massenpunktes: Newton'sches Grundgesetz, Bewegungsgleichungen, Arbeitssatz, Energieerhaltungssatz
- Kinetik von Massenpunktsystemen
- Impulssatz und Stoßprobleme
- Kinematik und Kinetik der ebenen Bewegung starrer Körper: Massenträgheitsmomente, Schwerpunktsatz und Drehimpulssatz
- Systeme starrer Körper: synthetische Vorgehensweise (Schnittprinzip) und analytische Methoden (Lagrangesche Gleichungen)
- Einführung in die Schwingungslehre: Modellbildung, freie, gedämpfte sowie erzwungene Schwingungen von Systemen mit bis zu zwei Freiheitsgraden
- Relativbewegung

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 45 Std.
- Bearbeitung der Hausarbeiten: 15 Std.
- Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.

Empfehlungen
folgende Module sollten bereits belegt worden sein: Statik starrer Körper [bauiBGP01-TM1], Festigkeitslehre [bauiBGP02-TM2]
Literatur
Gross / Hauger / Schröder Wall - Technische Mechanik 3
Modul: Einführung Sportwissenschaft (SPOW-BSc-EinfSpow) [M-GEISTSOZ-100922]

Verantwortung: Prof. Dr. Alexander Woll
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Sport

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-103244</td>
<td>Einführung Sportwissenschaft</td>
<td>3 LP</td>
<td>Hildebrand</td>
</tr>
<tr>
<td>T-GEISTSOZ-103237</td>
<td>Wissenschaftliches Arbeiten</td>
<td>2 LP</td>
<td>Ebner-Priemer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten über die Lehrinhalte der Vorlesung und des Proseminars nach § 4 Abs. 2 Nr. 1 SPO B.Sc. Sportwissenschaft 2015 sowie einer Studienleistung im Rahmen des Proseminars (schriftliche Ausarbeitung von 10 Seiten) nach § 4 Abs. 3 SPO B.Sc. Sportwissenschaft 2015

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden
- erlangen ein Überblickswissen über Entwicklung, Merkmale, Gegenstände, Forschungsmethoden, Konzepte, und Aufgaben der Sportwissenschaft.
- sind mit grundlegenden wissenschaftstheoretischen Sichtweisen und forschungsmethodologischen Fragestellungen vertraut können deren Stellenwert in der Sportwissenschaft beschreiben.
- können Arbeitsweisen und Problemstellungen der Sportwissenschaft benennen, einordnen und anwenden.
- kennen grundlegende Forschungsmethoden der Sportwissenschaft und können deren Bedeutung disziplinspezifisch beschreiben.
- können die Struktur des Sportsystems in Deutschland beschreiben und kennen die Strukturen und Aufgabenfelder relevanter Einrichtungen und Institutionen des Sports sowie der Sportwissenschaft.
- können sportwissenschaftliche Fachsprache situationspezifisch anwenden.
- lernen relevante Techniken des wissenschaftlichen Arbeitsens kennen
- sind in der Lage, sich selbstständig in den Wissensbeständen der sportwissenschaftlichen Theorie- und Themenfelder zu orientieren.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote entspricht der Note der schriftlichen Prüfung.

Anmerkungen
Bestandteil der Orientierungsprüfung nach § 8 Abs. 1 SPO Bachelor Sportwissenschaft
Arbeitsaufwand
1. Präsenzzeiten in V + PS: 60 Stunden
2. Vor- und Nachbereitung von V + PS: 30 Stunden
3. Projektarbeit im PS: 20 Stunden
4. Klausurvorbereitung und Präsenzzeit in der Klausur: 40 Stunden

Empfehlungen
keine
2.19 Modul: Elektrische Energienetze [M-ETIT-100572]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-100830 | Elektrische Energienetze | 6 LP | Leibfried |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können Leistungsfloßberechnungen und Kurzschlussstromberechnungen im elektrischen Energienetz vornehmen. Sie kennen dazu die Ersatzschaltungen der Betriebsmittel und die mathematischen Grundlagen der Berechnungsverfahren, sowohl als symmetrisch als auch unsymmetrische Netze.

Inhalt

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzstudienzeit Vorlesung: 30 h
Präsenzstudienzeit Übung: 15 h
Selbststudienzeit: 105 h
Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt 150 h = 6 LP
2.20 Modul: Elektrische Maschinen und Stromrichter [M-ETIT-102124]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 2
Version 1

Pflichtbestandteile
T-ETIT-101954 Elektrische Maschinen und Stromrichter 6 LP Becker

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden kennen die wesentlichen elektrischen Maschinen und Stromrichter.
Sie sind in der Lage, deren Verhalten durch Kennlinien und einfache Modelle zu beschreiben.
Sie analysieren die Netzrückwirkung und die Auswirkung von Stromrichtern auf die elektrische Maschine mit Hilfe der Beschreibung durch Fourierreihen.
Sie können die Bestandteile von Energieübertragungs- und Antriebssystemen erkennen und deren Verhalten durch Kopplung der Modelle von Stromrichter und Maschine berechnen.

Inhalt
Grundlagenvorlesung der Antriebstechnik und Leistungselektronik. Es werden zunächst Wirkungsweise und Betriebsverhalten der wichtigsten elektrischen Maschinen erläutert.
Anschließend werden die Funktion und das Verhalten der wichtigsten Stromrichterschaltungen beschrieben.
Wirkungsweise und Einsatzgebiete von elektrischen Maschinen und leistungselektronischen Schaltungen werden an Beispielen vertieft.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
14x V und 14x U à 1,5 h = .35 h
14x Nachbereitung V à 1 h = 14 h
13x Vorbereitung zu U à 2 h = 26 h
Prüfungsvorbereitung: = 80 h
Prüfungszzeit = 2 h
Insgesamt ca. 157 h
(entspricht 6 Leistungspunkten)
2.21 Modul: Elektroenergiesysteme [M-ETIT-102156]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 2
Version 1

Pflichtbestandteile
T-ETIT-101923 Elektroenergiesysteme 5 LP Leibfried

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden sind in der Lage elektrische Schaltungen (passive oder mit gesteuerten Quellen) im Zeit- und Frequenzbereich zu berechnen. Sie kennen ferner die wichtigsten Netzbetriebsmittel, ihre physikalische Wirkungsweise und ihre elektrische Ersatzschaltung.

Inhalt
Die Vorlesung behandelt im ersten Teil die Berechnung von Ausgleichsvorgängen in linearen elektrischen Netzwerken durch Differentialgleichungen und mit Hilfe der Laplace-Transformation. Im zweiten Teil der Vorlesung werden die elektrischen Netzbetriebsmittel behandelt.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Präsenzstudienzeit Vorlesung: 30 h
Präsenzstudienzeit Übung: 15 h
Selbststudienzeit: 90 h
Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt 135 h = 5 LP
2.22 Modul: Elektronische Schaltungen [M-ETIT-104465]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil) (EV ab 01.10.2021)
 Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil) (EV ab 01.10.2021)

Leistungspunkte: 7
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 1
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Noten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109318</td>
<td>6</td>
<td>LP</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T-ETIT-109138</td>
<td>1</td>
<td>LP</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus:

1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Elektronische Schaltungen, (6 LP) und der freiwilligen Abgabe der Lösungen von Tutoriumsaufgaben
2. einer schriftlichen Ausarbeitung zu Lehrveranstaltung Elektronische Schaltungen - Workshop, (1 LP)

Voraussetzungen
Keine

Qualifikationsziele

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, einfach elektronische Transistorschaltungen zu realisieren und charakterisieren.
Inhalt

Grundlagenvorlesung über passive und aktive elektronische Bauelemente und Schaltungen für analoge und digitale Anwendungen.

Schwerpunkte sind der Aufbau und die schaltungstechnische Realisierung analoger Verstärkerschaltungen mit Bipolar- und Feldeffektransistoren, der schaltungstechnische Aufbau von einfachen Logikelementen für komplexe logische Schaltkreise. Zudem werden die Grundlagen der Analog/Digital und Digital/Analog-Wandlung vermittelt. Im Einzelnen werden die nachfolgenden Themen behandelt:

- Einleitung (Bezeichnungen, Begriffe)
- Passive Bauelemente (R, C, L)
- Halbleiterbauelemente (Dioden, Transistoren)
- Dioden
- Bipolare Transistoren
- Feldeffektransistoren (JFET, MOSFET, CMOS), Eigenschaften und Anwendungen
- Verstärkerschaltungen mit Transistoren
- Eigenschaften von Operationsverstärkern
- Anwendungsbeispiele von Operationsverstärkern
- Kippschaltungen
- Kippschaltungen
- Schaltkreisfamilien (bipolar, MOS)
- Sequentielle Logik (Flipflops, Zähler, Schieberegister)
- Codewandler und digitale Auswahlschaltungen

Zusammensetzung der Modulnote

Die Modulnote setzt sich aus der Note der schriftlichen Prüfung und einem eventuell erhaltenen Notenbonus aus Tutoriumsaufgaben zusammen.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung, der 14 tägigen Übung und den sechs Tutoriumsterminen sowie die Vorbereitung (82 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von ca. 180 h für die Lehrveranstaltung Elektronische Schaltungen, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2 h
2. Bearbeitung der Aufgabenstellung: 23 h
3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5 h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Der erfolgreiche Abschluss von LV „Lineare elektrische Netze“ wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.
2.23 Modul: Elektronische Systeme und EMV [M-ETIT-100410]

Verantwortung: Dr. Martin Sack
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-ETIT-100723 Elektronische Systeme und EMV 3 LP Sack

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden kennen Kopplungsmechanismen und mögliche Kopplungspfade für Störsignale in elektronischen Schaltungen und Systemen, sowie Maßnahmen zur Störunterdrückung und zum funktionssicheren Aufbau von solchen Systemen.

Inhalt
Aufbauend auf den Kopplungsmechanismen für Störsignale zeigt die Vorlesung verschiedene Kopplungspfade für Störungen, die Auswirkungen der Störeinkopplung auf die Schaltungsfunktion sowie Maßnahmen zur Unterdrückung und zum funktionssicheren Aufbau von Systemen auf.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand
Präsenzstudienzeit: 30 h
Selbststudienzeit: 45 h
Insgesamt 75 h = 3 LP
2 MODULE

M 2.24 Modul: Elektrotechnik [M-ETIT-104801]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Wahlpflichtbereich Metalltechnik)

Leistungspunkte: 8
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>8 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109820 Elektrotechnik und Elektronik</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Prüfung statt, Dauer 3 Stunden.

Voraussetzungen

Die im 3. Fachsemester bekannten Kenntnisse in Mathematik sowie Schulphysik der Mittelstufe.

Qualifikationsziele

- Nach dem erfolgreichen Besuch der Lehrveranstaltung können die Studierenden die für Maschinenbauingenieure relevanten elektrotechnischen Grundlagen (Elektrisches Feld, magnetisches Feld, Widerstand, Kondensator, Spule) auf Fragestellungen der Praxis anwenden.
- Die Studierenden sind in der Lage elektrische Gleich- und Wechsel-Stromkreise zu analysieren und dabei verschiedene Methoden zur Netzwerkanalyse anzuwenden.
- Des Weiteren können die Studierenden (die natürlichen) Berührpunkte zwischen Elektrotechnik und Maschinenbau erläutern: Sie können Aufbau und Funktion der wichtigsten elektrischen Maschinen (Transformator, Gleichstrom-, Asynchron- und Synchronmaschine) beschreiben und sind in der Lage einfache Auslegungen und Berechnungen zum stationären Betrieb von Maschinen durchzuführen.
- Des Weiteren können die Studierenden die wichtigsten Halbleiterbauelemente benennen und ihre physikalische Funktionsweise beschreiben.
- Darüber hinaus haben die Studierenden die wichtigsten leistungselektronische Grundschaltungen für abschaltbare und nicht abschaltbare Halbleiterschalter kennen gelernt und können auch daraus abgeleitete komplexere Schaltungen verstehen.
- Ebenso können die Studierenden Operationsverstärker-schaltungen erklären und berechnen, indem sie die am Anfang der Lehrveranstaltung erlernten Methoden der Netzwerkanalyse anwenden und auf die Untersuchung von Operationsverstärkerschaltungen übertragen.
Inhalt

Im Abschnitt Halbleiterbauelemente werden neben der Herstellung insbesondere der PN-Übergang mit dem einfachsten zugehörigen Bauelement, der Diode, sowie weitere auf Halbleitern (ohne PN-Übergang) basierende Bauelemente erklärt.

Mit abschaltbaren Schaltern aufgebaute DC-DC-Steller (Tiefsetz- bzw. Hochsetzsteller) werden ebenso erklärt wie der Aufbau und die Ansteuerung selbstgeführter Drehstrombrücken zur Realisierung von Umrichtern zur Speisung von Drehfeldmaschinen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen
Prüfungen und Vorlesungen finden in deutscher Sprache statt.

Durch erfolgreiche Bearbeitung zweier Zusatzübungsblätter (auf freiwilliger Basis) kann ein Bonus von bis zu 6 Klausurpunkten erarbeitet werden (entspricht einer maximalen Notenverbesserung der schriftlichen Prüfung um den Wert 0,3 bzw. 0,4).

Arbeitsaufwand
31x V und 14x U à 1,5 h: = . 67,5 h
31x Nachbereitung V à 1 h = 31 h
14x Vor/Nachbereitung zu U à 2 h = 24 h
2x Zusatzübungsblatt à 5 h = 10 h
Prüfungsvorbereitung: = 80 h
Prüfungszeit = 3 h
Insgesamt = 215,5 h (entspricht 8 Leistungspunkten)
Verantwortung: Dr.-Ing. Armin Teltschik
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte 6
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 2
Version 4

Pflichtbestandteile

| T-ETIT-101943 | Elektrotechnisches Grundlagenpraktikum | 6 LP | Teltschik |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
Es werden Versuche aus folgenden Bereichen durchgeführt:
- Oszilloskopmesstechnik,
- Operationsverstärker: Grundschaltungen, Rechenschaltungen, Fourier-/ analyse & synthese
- Messtechnik mit LabVIEW
- Schaltungssimulation mit SPICE
- Kleinsignalverhalten bipolarer Transistoren
- Wechselspannung, Kleintransformatoren, Gleichrichter, Linearregler
- Digitaltechnik, Automatenentwurf, Detektion von Laufzeitfehlern
- Gleichstromsteller

Zusammensetzung der Modulnote
Die Veranstaltung ist nicht benotet.

Anmerkungen
Für die Teilnahme am Abschlusskolloquium müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

1. Präsenzzeit im Praktikum: 36 h
2. Vor-/Nachbereitung derselbigen: 63 / 36 h
3. Klausurvorbereitung und Präsenz in selber: 20 h
Empfehlungen
Die LV „Digitaltechnik“ (23615) und „Elektronische Schaltungen“ (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.
2.26 Modul: Erfolgskontrollen [M-GEISTSOZ-101987]

Einrichtung: KiT-Fakultät für Geistes- und Sozialwissenschaften
Universität gesamt

Bestandteil von: Mastervorzug

Leistungspunkte: 30
Notenskala: best./nicht best.
Sprache: Deutsch
Level: 4
Version: 1

Voraussetzungen: keine
2.27 Modul: Erzeugung elektrischer Energie [M-ETIT-100407]

Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte: 3
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-ETIT-101924 | Erzeugung elektrischer Energie | 3 LP | Hoferer |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen
Wer das Modul Erzeugung Elektrischer Energie (EEE) im Bachelor (SPO 2015 und 2018) gemacht hat, soll im Master nicht das Modul Electric Power Generation and Power Grid wählen.

Arbeitsaufwand
Präsenzstudienzeit: 30 h
Selbststudienzeit: 60 h
Insgesamt 90 h = 3 LP
2.28 Modul: Experimentalphysik [M-PHYS-101684]

Verantwortung: Prof. Dr. Thomas Schimmel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-PHYS-103240 Experimentalphysik A 5 LP Schimmel

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung nach § 4 Abs. 2 Nr.1 SPO-AB_2015_KIT_15.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden identifizieren die Grundlagen der Physik auf breiter Basis. In der Experimentalphysik A werden insbesondere an Beispielen aus der Mechanik Grundkonzepte der Physik (Kraftbegriff, Felder, Superpositionsprinzip, Arbeit, Leistung, Energie, Erhaltungssätze etc.) beschrieben. Vom Stoffgebiet werden die Grundlagen der Mechanik in voller Breite sowie die Sätze zu Schwingungen und Wellen und die Thermodynamik (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff) behandelt

Inhalt
- **Mechanik** (Kraft, Impuls, Energie, Stoßprozesse, Erhaltungssätze, Drehimpuls, Drehmoment, Statische Felder, Gravitation und Keplersche Gesetze)
- **Schwingungen und Wellen**
- **Thermodynamik** (Hauptsätze der Thermodynamik, ideale und reale Gase, Zustandsänderungen und Zustandsgleichungen, mikroskopische Beschreibung idealer Gase, Wärmekraftmaschinen und Wärmepumpen, Entropiebegriff)
Verantwortung: Dr.-Ing. Michael Gerstenmeyer
Prof. Dr.-Ing. Volker Schulze

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metalbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 4
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-MACH-105219 Grundlagen der Fertigungstechnik
4 LP Schulze

Erfolgskontrolle(n)
schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen keine

Qualifikationsziele
Die Studierenden …

• können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
• sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
• sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
• sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
• sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
• sind in der Lage, für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Inhalt

Die Themen im Einzelnen sind:
• Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
• Umformen (Blech-, Massivumformung)
• Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
• Fügen
• Beschichten
• Wärme- und Oberflächenbehandlung

Arbeitsaufwand
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lehr- und Lernformen
Vorlesung
2.30 Modul: Festigkeitslehre (bauBG02-TM2) [M-BGU-101746]

Verantwortung: Prof. Dr.-Ing. Thomas Seelig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103378 | Festigkeitslehre | 9 LP | Seelig |

Erfolgskontrolle(n)
- Teilleistung T-BGU-103378 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
Einzelnheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele

Inhalt
• Zug – Druck in Stäben – Spannung / Dehnung / Stoffgesetz
• Differentialgleichung – Stab
• statisch bestimmte und unbestimmte Probleme
• mehrachsiger Spannungszustand
• Hauptspannungen – Mohr’scher Spannungskreis
• Gleichgewichtsbedingungen
• Verzerrungszustand, Elastizitätsgesetze
• Festigkeitshypothesen
• Balkenbiegung
• Flächenträgheitsmomente
• Grundgleichungen der geraden Biegung
• Normalspannungen infolge Biegung
• Differentialgleichungen der Biegelinie
• Einfeld- / Mehrfeldbalken / Superposition
• Schubspannungen
• schiefe Biegung
• Torsion
• Arbeitssatz und Formänderungsenergie
• Prinzip der virtuellen Kräfte für Fachwerke und Biegebalken
• Einflusszahlen – Vertauschungssätze
• Anwendung des Arbeitssatzes auf statisch unbestimmte Systeme
• Knicken

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 270 Std.

Empfehlungen
Das Modul Statik starrer Körper [bauIBGP01-TM1] sollte bereits belegt worden sein.

Literatur
Gross / Hauger / Schröder Wall - Technische Mechanik 2
2.31 Modul: Finanzierung und Rechnungswesen [M-WIWI-105769]

Verantwortung: Prof. Dr. Martin Ruckes
Dr. Jan-Oliver Strych
Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt schriftlich über die beiden Lehrveranstaltungen "Finanzierung und Rechnungswesen" sowie "Jahresabschluss und Bewertung". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Qualifikationsziele
Der/die Studierende

• besitzt grundlegende Kenntnisse in finanzwirtschaftlichen Beurteilung wichtiger Unternehmensentscheidungen und des Funktionierens von Finanzmärkten,
• hat ein Verständnis für Probleme, Zusammenhänge und Lösungen des internen Rechnungswesens von Unternehmen,
• kennt die Strukturen und Funktionen des externen Rechnungswesens,
• besitzt einen Überblick über wichtige Komponenten des Jahresabschlusses von Unternehmen und ist in der Lage diesen ökonomisch zu beurteilen.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt
Es werden die Grundlagen für die finanzwirtschaftliche Analyse wichtiger unternehmerischer Entscheidungen vermittelt. Zudem werden die Grundlagen des internen und externen Rechnungswesens gelegt und es wird in die Rechnungslegung und den Jahresabschluss eingeführt.

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
2.32 Modul: Geologie im Bauwesen (bauiBGP13-GEOL) [M-BGU-101756]

Verantwortung: Prof. Dr. Philipp Blum
 Prof. Dr. Jörg-Detlef Eckhardt

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Teilleistung</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103395</td>
<td>Geologie im Bauwesen</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103395 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können grundlegende Begriffe aus der Geologie, die für das Bauwesen von Bedeutung sind, benennen. Sie können wesentliche geologische Abläufe, Zusammenhänge und Arbeitsweisen beschreiben.

Inhalt
- Aufbau und Dynamik der Erde
- Kristalle, Minerale und Gesteinsarten
- Entstehung und Klassifikation von Gesteinen
- Baugrundeigenschaften
- tektonische und hydrogeologische Grundlagen

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std.
- Testatvorbereitung: 15 Std.

Summe: 60 Std.

Empfehlungen
keine

Literatur
2.33 Modul: Geotechnisches Ingenieurwesen (bauiBFP7-GEOING) [M-BGU-103698]

Verantwortung: Prof. Dr.-Ing. Hans Henning Stutz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 11
Notenskala
Turnus Jedes Sommersemester
Dauer 2 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-BGU-107465 Geotechnisches Ingenieurwesen 11 LP Stutz

Erfolgskontrolle(n)
- Teilleistung T-BGU-107465 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Voraussetzungen
keine

Qualifikationsziele

Inhalt
Das Modul vermittelt theoretisches Grundwissen zum Bodenverhalten und demonstriert dessen praktische Anwendung bei der Bemessung der gängigsten geotechnischen Konstruktionen. Behandelt werden:

- Normen, Richtlinien und Sicherheitsnachweise im Erd- und Grundbau
- Baugrundkundung, Bodenklassifizierung, Bodeneigenschaften und Bodenkenngrößen
- Durchlässigkeit, Sickerströmung und Grundwasserhaltungen
- Spannungsausbreitung im Baugrund, Kompressionsverhalten und Konsolidierung
- Scherfestigkeit der Erdstoffe, Standsicherheit von Böschungen und Gründungen
- Bemessung und Setzungsberechnung von Flachgründungen
- Erddruck und Erdwiderstand, Bemessung von Stützbauwerken und Baugrubenverbauten
- Pfahlgründungen, Tiefgründungen und Gründungen im offenen Wasser
- Verfahren zur Baugrundverbesserung
- Einführung in den bergmännischen Tunnelbau

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
Vorlesungsbegleitend werden Tutorien (6200417 + 6200418) angeboten, deren Besuch empfohlen wird. Die Vor- und Nachbereitung in Eigenregie kann in Form einer freiwilligen Studienarbeit erfolgen.

Arbeitsaufwand
Präsenzzzeit (1 SWS = 1 Std. x 15 Wo.):

- Grundlagen der Bodenmechanik Vorlesung, Übung, Tutorium: 90 Std.
- Grundlagen des Grundbaus Vorlesung, Übung, Tutorium: 90 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesung, Übung Grundlagen der Bodenmechanik: 30 Std.
- Vor- und Nachbereitung Vorlesung, Übung Grundlagen des Grundbaus: 30 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 330 Std.
Empfehlungen
Der Besuch der vorlesungsbegleitenden Tutorien (6200417, 6200517) wird empfohlen. Ebenso wird die eigenständige Nachbereitung und für die Prüfungsvorbereitung die Bearbeitung einer freiwilligen Studienarbeiten unbedingt empfohlen.

Literatur
Gudehus, G (1981): Bodenmechanik, F. Enke
Grundwissen "Der Ingenieurbau" (1995) Bd. 2: Hydrotechnik – Geotechnik, Ernst u. Sohn
Kolymbas, D.: Geotechnik, Springer-Verlag 5. Auflage
Triantafyllidis, Th.: Übungsblätter Bodenmechanik und Übungsblätter Grundbau
Modul: Gewerke und Technik im schlüsselfertigen Hochbau (BauiEX405-) [M-BGU-105335]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr.-Ing. Shervin Haghsheno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik) (EV ab 01.04.2020)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notenskala</td>
<td>best./nicht best.</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Level</td>
<td>3</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-110821 | Gewerke und Technik im schlüsselfertigen Hochbau | 2 LP | Haghsheno |

Erfolgskontrolle(n)

- Teilleistung T-BGU-110821, mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden können die grundlegenden Verfahrens- und Ausführungstechniken im Roh- und Ausbau sowie der technischen Gebäudeausrüstung beschreiben.

Inhalt

Zusammensetzung der Modulnote

unbenotet

Anmerkungen

wird ab dem Wintersemester 2020/21 neu angeboten

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor und Nachbereitung Vorlesung/Übungen: 15 Std.
- Testvorbereitung: 15 Std.

Summe: 60 Std.

Empfehlungen

keine
2.35 Modul: Grundlagen der Gemeinschaftskunde (IP-GGK-Grundl-GK) [M-GEISTSOZ-101577]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Geschichte mit Gemeinschaftskunde

Leistungspunkte: 10
Notenskala: Zehntelnoten
Turnus: Jährlich
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Wahlinformationen
Die Lehrveranstaltungen für diese Modul werden in Kooperation mit der Pädagogischen Hochschule Karlsruhe angeboten, Informationen dazu sind auf der Website der KIT-Fakultät für Geistes- und Sozialwissenschaften zu finden unter https://www.geistsoz.kit.edu/ingenieurpaedagogik.php

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-103016</td>
<td>Einführung in die Politikwissenschaft</td>
<td>3</td>
</tr>
<tr>
<td>T-GEISTSOZ-103017</td>
<td>Einführung in die internationalen Beziehungen</td>
<td>3</td>
</tr>
<tr>
<td>T-GEISTSOZ-103018</td>
<td>Einführung in die Didaktik der politischen Bildung (fachdidaktische Veranstaltung)</td>
<td>3</td>
</tr>
<tr>
<td>T-GEISTSOZ-103019</td>
<td>Modulprüfung Klausur 1 LP</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Bachelor „Ingenieurpädagogik“ im Umfang von 90 Minuten zu den Inhalten des Moduls (1 LP). Zusätzlich sind Studienleistungen in folgenden Lehrveranstaltungen zu erbringen:
1. „Einführung in die Politikwissenschaft“ (3 LP)
2. „Einführung in die internationalen Beziehungen“ (3 LP)
3. „Einführung in die Didaktik der politischen Bildung“ (3 LP)

Voraussetzungen
keine

Qualifikationsziele
Fachliche Kompetenzen:

Überfachliche Kompetenzen:

Inhalt

Zusammensetzung der Modulnote
Die Note des Moduls entspricht der Note der Modulprüfung.
Arbeitsaufwand

<table>
<thead>
<tr>
<th>Präsenzstudienzeiten</th>
<th>Selbststudienzeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anwesenheit</td>
<td>90 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>90 h</td>
</tr>
<tr>
<td>Prüfung(en) / Erfolgskontrolle(n)</td>
<td>120 h</td>
</tr>
<tr>
<td>Summe</td>
<td>300 h</td>
</tr>
</tbody>
</table>

Empfehlungen
keine
Verantwortung:
Prof. Dr. Marcus Popplow

Einrichtung:
KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von:
Wahlpflichtfach (2. Unterrichtsfach): Geschichte mit Gemeinschaftskunde

Leistungspunkte
10

Notenskala
Zehntelnoten

Turnus
Jährlich

Dauer
2 Semester

Sprache
Deutsch

Level
1

Version
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcodename</th>
<th>Modulname</th>
<th>LP</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-101182</td>
<td>Orientierung Geschichte</td>
<td>0</td>
<td>Popplow</td>
</tr>
<tr>
<td>T-GEISTSOZ-101185</td>
<td>Einführung in die Politische Geschichte</td>
<td>0</td>
<td>Popplow</td>
</tr>
<tr>
<td>T-GEISTSOZ-101186</td>
<td>Einführung in die Kulturgeschichte der Technik</td>
<td>0</td>
<td>Popplow</td>
</tr>
<tr>
<td>T-GEISTSOZ-109193</td>
<td>Geschichtswissenschaftliche Arbeitstechniken</td>
<td>0</td>
<td>Popplow</td>
</tr>
<tr>
<td>T-GEISTSOZ-109227</td>
<td>Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft</td>
<td>10</td>
<td>Popplow</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Das Bestehen der Studienleistungen in den Veranstaltungen sowie das Bestehen der Modulprüfung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können historische Texte analysieren, sie haben Darstellungskompetenzen sowie ein Epochen- und Strukturbewusstsein im Hinblick auf die Zeit von 1750 bis zur Gegenwart.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.
2.37 Modul: Grundlagen der Hochfrequenztechnik [M-ETIT-102129]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungsunternehmen“ (Wahlpflichtbereich Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101955 | Grundlagen der Hochfrequenztechnik | 6 LP | Zwick |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen

Keine

Qualifikationsziele

Inhalt

Studienplanvorschrift Hochfrequenztechnik: Schwerpunkte der Vorlesung sind die Vermittlung eines grundlegenden Verständnisses der Hochfrequenztechnik sowie der methodischen und mathematischen Grundlagen zum Entwurf von Mikrowellensystemen. Wesentliche Themengebiete sind dabei passive Bauelemente und lineare Schaltungen bei höheren Frequenzen, die Leitungstheorie, die Mikrowellennetzwerkalyse, sowie eine Übersicht über Mikrowellensysteme.

Zusätzlich zur Saalübung wird in einem Tutorium die selbstständige Bearbeitung von typischen Aufgabenstellungen der Hochfrequenz-Technik geübt. Dazu bearbeiten die Studierenden die Aufgaben in Kleingruppen und erhalten Hilfestellung von einem studentischen Tutor.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.

Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

- Präsenzstudienzeit Vorlesung/Übung: 60 h
- Präsenzstudienzeit Tutorium: 15 h
- Selbststudienzeit inkl. Prüfungsvorbereitung: 105 h
- Insgesamt 180 h = 6 LP

Empfehlungen

Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.
2.38 Modul: Grundlagen der Physik [M-PHYS-101682]

Verantwortung: Prof. Dr. Günter Quast
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103246</td>
<td>Arbeitsgemeinschaft Experimentalphysik A</td>
<td>2</td>
<td>Quast</td>
</tr>
<tr>
<td>T-PHYS-103248</td>
<td>Arbeitsgemeinschaft Experimentalphysik B</td>
<td>2</td>
<td>Quast</td>
</tr>
<tr>
<td>T-PHYS-100278</td>
<td>Experimentalphysik</td>
<td>16</td>
<td>Pilawa, Schimmel</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Modul: Grundlagen des Stahl- und Holzbaus (bauI3KSTR.B) [M-BGU-103697]

Verantwortung: Prof. Dr.-Ing. Philipp Dietsch
 Prof. Dr.-Ing. Thomas Ummenhofer

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107462</td>
<td>Grundlagen des Stahlbaus</td>
<td>4</td>
<td>Ummenhofer</td>
</tr>
<tr>
<td>T-BGU-107463</td>
<td>Grundlagen des Holzbaus</td>
<td>4</td>
<td>Dietsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Teilleistung T-BGU-107462 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-107463 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen
keine

Qualifikationsziele

Inhalt

Grundlagen des Stahlbaus:

- Werkstoffe
- Konstruktionselemente und Tragsysteme
- zug- und biegebeanspruchte Bauteile
- Verbindungen im Stahlbau
- Stabilitätsnachweise

Grundlagen des Holzbaus:

- Grundlagen: Beispiele von Holzbauten, Holz als Baustoff, Vollholz und BSH – Festigkeitsklassen, Bemessung nach Grenzzuständen und Sicherheitsmethode, Einfluss des Volumens und der Spannungsverteilung auf die Festigkeit
- Bemessung von Bauteilen: Zug und Druck, Biegung, Schub und Torsion, Druckstäbe und Knicklängen, Pultdachträger, Gekrümmte Träger und Satteldachträger, Aussteifungsverbände
- Verbindungen: Mechanische Holzverbindungen – Allgemeines, Verbindungen mit stifftförmigen Verbindungsmitteln – Theorie, Nagelverbindungen, Bolzen- und Stabdübelverbindungen, Holzschraubenverbindungen

Zusammensetzung der Modulnote

Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen
keine
Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Grundlagen des Stahlbaus Vorlesung, Übung: 45 Std.
- Grundlagen des Holzbaus Vorlesung, Übung: 45 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Stahlbaus: 20 Std.
- Prüfungsvorbereitung Grundlagen des Stahlbaus: 55 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Holzbaus: 20 Std.
- Prüfungsvorbereitung Grundlagen des Holzbaus: 55 Std.

Summe: 240 Std.

Empfehlungen
keine

Literatur
Skript "Grundlagen des Stahlbaus", Versuchsanstalt Stahl, Holz und Steine, KIT
2.40 Modul: Grundlagen des Stahlbetonbaus (bauiBFP2-KSTR.A) [M-BGU-103696]

Verantwortung: Prof. Dr.-Ing. Alexander Stark

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntenot</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103389 | Grundlagen des Stahlbetonbaus I | 4 LP Stark |
| T-BGU-103390 | Grundlagen des Stahlbetonbaus II | 2 LP Stark |

Erfolgskontrolle(n)
- Teilleistung T-BGU-103389 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
- Teilleistung T-BGU-103390 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Materialeigenschaften und Verbundverhalten von Beton und Stahl
- Bemessung typischer Stahlbetonquerschnitte und -bauteile für Biegung mit Längskraft, Querkraft und Torsion

Zusammensetzung der Modulnote
Modulnote ist nach Leistungspunkten gewichteter Durchschnitt aus Noten der Teilprüfungen

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Grundlagen des Stahlbetonbaus I Vorlesung, Übung: 45 Std.
- Grundlagen des Stahlbetonbaus II Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen Grundlagen des Stahlbetonbaus I: 15 Std.
- Prüfungsvorbereitung Grundlagen des Stahlbetonbaus I: 45 Std.
- Vor- und Nachbereitung Vorlesungen/Übungen Grundlagen des Stahlbetonbaus II: 15 Std.
- Prüfungsvorbereitung Grundlagen des Stahlbetonbaus II: 30 Std.

Summe: 180 Std.

Empfehlungen
keine
2.41 Modul: Grundlagen Mannschaftssport (SPOW-BSc-Mansport) [M-GEISTSOZ-101701]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Sport

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Praxis (Wahl: 1 Bestandteil)
- T-GEISTSOZ-100840 Grundfach Basketball - Praxis 2 LP Blicker
- T-GEISTSOZ-100847 Grundfach Fußball - Praxis 2 LP Blicker
- T-GEISTSOZ-100845 Grundfach Handball - Praxis 2 LP Futterer
- T-GEISTSOZ-100841 Grundfach Volleyball - Praxis 2 LP Kurz

Theorie (Wahl: 1 Bestandteil)
- T-GEISTSOZ-100842 Grundfach Basketball - Theorie 2 LP Blicker
- T-GEISTSOZ-100846 Grundfach Fußball - Theorie 2 LP Blicker
- T-GEISTSOZ-100844 Grundfach Handball - Theorie 2 LP Futterer
- T-GEISTSOZ-100843 Grundfach Volleyball - Theorie 2 LP Kurz

Erfolgskontrolle(n)
The Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfungsleistung im Umfang von 60 Minuten nach § 4 Abs. 2 Nr. 1 SPO B.Sc. Sportwissenschaft 2015 und einer Prüfung anderer Art nach § 4 Abs. 2 Nr. 1 und 3 SPO B.Sc. Sportwissenschaft 2015

Voraussetzungen
Die Anmeldung zu einer praktischen Prüfung in einer gewählten Sportart ist nur in Verbindung mit einer vorherigen Anmeldung zur passenden theoretischen Prüfung möglich.

Qualifikationsziele
Die Studierenden
- verfügen über grundlegende sportmotorische und taktische Fähigkeiten und Fertigkeiten in den gewählten Spielsportarten, die sie selbständig reflektieren und weiterentwickeln können
- entwickeln Fach- und Lehrkompetenz in den Spielsportarten (Basketball, Fußball, Handball, Volleyball)
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen, sportmotorischen und taktischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- lernen didaktische Vermittlungskonzepte in den Sportarten kennen und können fachdidaktische Konzepte in Theorie und Praxis kritisch bewerten.
- können theoretisches Wissen aus der Spielsportforschung in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln
- habe Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in den gewählten Sportarten

Inhalt

Die Studierenden erfassen mit unterschiedlichen Messverfahren die Ausübung der sportartspezifischen Handlungen und können diese beschreiben, bewerten und fachlich kommentieren (Bewegungsanalyse, Bewegungskorrektur).

Theoretisches Wissen aus den gewählten Sportarten wird in das praktische Handeln transferiert, erprobt, bewertet und diskutiert

Zusammensetzung der Modulnote
Die Modulnote ergibt sich als ein nach LP gewichteter Notendurchschnitt der abgelegten Teilleistungen und wird auf die erste Nachkommastelle abgeschnitten.
Arbeitsaufwand
Der Arbeitsaufwand richtet sich an der entsprechenden Anzahl der Leistungspunkte und ist je nach gewählter Veranstaltung unterschiedlich dargelegt.

Empfehlungen
keine
M 2.42 Modul: Hardware/Software Co-Design [M-ETIT-100453]

Verantwortung: Dr.-Ing. Oliver Sander
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Voraussetzungen</th>
<th>Qualifikationsziele</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Voraussetzungen
keine
Inhalt

• In der Vorlesung werden die theoretischen Grundlagen zum verzahnten Entwurf von Hardware- und Softwareteilen eines Systems vorgestellt. Zusätzlich wird deren praktische Anwendung anhand von verschiedenen aktuellen Software- und Hardwarekomponenten demonstriert.

• Die begleitenden Übungen sollen das in den Vorlesungen erlernte Wissen fundieren. Ausgewählte Themen werden wiederholt, und anhand theoretischer und praktischer Beispiele lernen die Studierenden die Anwendung der Methoden für den modernen Systementwurf.

 ◦ Zielarchitekturen für Hardware/Software-Systeme
 • Prozessoraufbau: Pipelining, Superskalarität, VLIW, SIMD, Cache, MIMD
 • General-Purpose Prozessoren (GPP), Mikrocontroller (µC), Digitale Signalprozessoren (DSP), Grafik Prozessoren (GPU), Applikations-spezifische Instruktionssatz Prozessoren (ASIP), Field Programmable Gate Arrays (FPGA), System-on-Chip (SoC), Bussysteme, Multicore und Network-on-Chip (NoC)

 ◦ Abschätzung der Entwurfsqualität
 • Hardware- und Software-Performanz

 ◦ Hardware/Software Partitionierungsverfahren
 • Iterative und Konstruktive Heuristiken

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)

1. Präsenzzeit in 14 Vorlesungen, 7 Übungen: 31,5 Std
2. Vor-/Nachbereitung derselbigen: 63 Std (3 Std pro Einheit)
3. Klausurvorbereitung und Präsenz in selbiger: 20 Std Vorbereitung und 0,5 Std Prüfung

Empfehlungen
Kenntnisse zu Grundlagen aus Digitaltechnik und Informationstechnik sind hilfreich.
2.43 Modul: Hochleistungsstromrichter [M-ETIT-100398]

Verantwortung: Prof. Dr.-Ing. Marc Hiller
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-100715 Hochleistungsstromrichter | 3 LP | Becker |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden kennen die für Hochleistungsanwendungen relevanten netzgeführten und selbstgeführten Stromrichter. Sie sind in der Lage, Stromrichter für Hochspannungs-Gleichstrom- Übertragungsanlagen und Großantriebe auszuwählen und deren Betriebseigenschaften abzuschätzen. Sie kennen die Funktionsweise sowie die Vor-und Nachteile der unterschiedlichen Mehrstufenwechselrichterschaltungen. Sie sind in der Lage, die erforderlichen Leistungshalbleiter je nach den elektrischen Anforderungen und der Art der Kühlung auszuwählen.

Inhalt

Im Einzelnen werden folgende Themengebiete behandelt:

- Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand

14x V à 1,5 h = 21 h
Prüfungsvorbereitung = 60 h

Insgesamt ca. 80 h (entspricht 3LP)

Empfehlungen

Kenntnisse zu den Grundlagen der LV „Elektrische Maschinen und Stromrichter“ sind hilfreich.
Modul: Höhere Mathematik I [M-MATH-101731]

Verantwortung: Prof. Dr. Dirk Hundertmark

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
- Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
- Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-103353 | Höhere Mathematik I - Klausur | 11 LP | Anapolitanos, Hundertmark, Kunstmann |

Erfolgskontrolle(n)
Schriftlich. Die Prüfung besteht aus einer 120-minütigen Klausur (verbindlich hinsichtlich der Prüfungsform ist der aktuelle Studienplan und die Bekanntgabe des Prüfungsamts).

Voraussetzungen
Keine

Qualifikationsziele
Differential- und Integralrechnung in einer Variablen. Grundlagen Lineare Algebra

Inhalt
Vorlesung

Übungen
Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote
Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)
1. Präsenzzeit in Vorlesungen, Übungen
2. Vor-/Nachbereitung derselben

Lehr- und Lernformen
Vorlesung, Übung und Tutorium

Literatur
Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.
2.45 Modul: Höhere Mathematik I [M-MATH-100280]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Zehntelnoten</td>
<td>Jährlich</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-100275 Höhere Mathematik I</td>
<td>7 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MATH-100525 Übungen zu Höhere Mathematik I</td>
<td>0 LP</td>
<td>Arens, Griesmaier, Hettlich</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen

keine

Qualifikationsziele

Inhalt

Grundbegriffe, Folgen und Konvergenz, Funktionen und Stetigkeit, Reihen, Differentialrechnung einer reellen Veränderlichen, Integralrechnung.

Zusammensetzung der Modulnote

Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand

Präsenzzeit: 90 Stunden

- Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitende Modulprüfung

Literatur

wird in der Vorlesung bekannt gegeben.

Grundlage für

Höhere Mathematik II
Modul: Höhere Mathematik II [M-MATH-100281]

Verantwortung: Prof. Dr. Roland Griesmaier
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 7
Notenskala
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 2

Pflichtbestandteile
T-MATH-100276 Höhere Mathematik II 7 LP Arens, Griesmaier, Hettlich
T-MATH-100526 Übungen zu Höhere Mathematik II Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. 0 LP Arens, Griesmaier, Hettlich

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten und einer Studienleistung (Übungsschein). Das Bestehen des Übungsscheins ist Voraussetzung für die Teilnahme an der schriftlichen Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden beherrschen die Grundlagen der Vektorraumtheorie.

Inhalt
Vektorräume, lineare Abbildungen, Eigenwerte, Fourierreihen, Differentialgleichungen, Laplacetransformation

Zusammensetzung der Modulnote
Die Modulnote entspricht der Note der schriftlichen Prüfung.

Arbeitsaufwand
Präsenzzeit: 90 Stunden
- Lehrveranstaltungen einschließlich studienbegleitender Modulprüfung

Selbststudium: 120 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vorbereitung auf die studienbegleitende Modulprüfung

Empfehlungen
Folgende Module sollten bereits belegt worden sein: Höhere Mathematik 1

Literatur
wird in der Vorlesung bekannt gegeben.

Grundlage für
Höhere Mathematik III
2.47 Modul: Höhere Mathematik II [M-MATH-101732]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-103354 | Höhere Mathematik II - Klausur | 8 LP | Anapolitanos, Hundertmark, Kunstmann |

Erfolgskontrolle(n)
Schriftlich: 120-minütige Klausur

Voraussetzungen
keine

Qualifikationsziele
Vertiefung der Linearen Algebra, mehrdimensionale Differential- und Integralrechnung, Integralsätze.

Inhalt
Vorlesung:

Übung:
Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote
Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)
1. Präsenzzeit in Vorlesungen, Übungen
2. Vor-/Nachbereitung derselben

Lehr- und Lernformen
Vorlesung, Übung und Tutorium

Literatur
Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.
2.48 Modul: Höhere Mathematik III [M-MATH-101738]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte 4
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-MATH-103357 Höhere Mathematik III - Klausur 4 LP Anapolitanos, Hundertmark, Kunstmann

Erfolgskontrolle(n)
Schriftlich, 90-minütige Klausur
Voraussetzungen
keine
Qualifikationsziele
Grundlagen gewöhnlicher und partieller Differentialgleichungen

Inhalt
Vorlesung

Übungen
Begleitend zur Vorlesung werden Übungsaufgaben gestellt, die teils in einer großen Saalübung, teils in kleinen Übungsgruppen (Tutorien) besprochen werden.

Zusammensetzung der Modulnote
Notenbildung ergibt sich aus der schriftlichen Prüfung

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen (für eine Vorlesung)
 1. Präsenzzeit in Vorlesungen, Übungen
 2. Vor-/Nachbereitung derselben

Lehr- und Lernformen
Vorlesung, Übung und Tutorium

Literatur
Wird in der Vorlesung und auf der Vorlesungshomepage bekanntgegeben. Je nach Dozent wird ein Skript bzw. eine Kurzfassung der Vorlesung zur Verfügung gestellt.
2.49 Modul: Hydromechanik (bauiBGP04-HYDRO) [M-BGU-101748]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte: 6
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 2
Version: 2

Pflichtbestandteile

| T-BGU-107586 | Prüfungsvorleistung Hydromechanik | 0 LP | Eiff |
| T-BGU-103380 | Hydromechanik | 6 LP | Eiff |

Erfolgskontrolle(n)
- Teilleistung T-BGU-107586 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-103380 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden sind in der Lage grundlegende strömungsmechanische Konzepte und Zusammenhänge benennen und erläutern zu können. Sie können diese auf einfache strömungsmechanische Probleme anwenden. Sie sind in der Lage, das im Kurs verwendete Grundlagenlehrbuch auf klassische Fragestellungen und Probleme effektiv anzuwenden und strömungsmechanische Fragen des beruflichen Alltags zu lösen.

Inhalt

- Eigenschaften von Fluiden
- Hydrostatik: Druckverteilung in ruhendem Fluid, Auftrieb
- Bernoulli-Gleichung
- Kinematik: Geschwindigkeits- und Beschleunigungsfelder, Kontrollvolumen, Reynolds-Transport-Theorem
- Analyse von finiten Kontrollvolumen: Kontinuitäts-, Impuls-, Energiegesetze
- Einführung in die differentielle Analyse von Strömungen
- Dimensionsanalyse, Ähnlichkeitsgesetze und Modellierung
- Rohrströmungen
- Umströmung starrer Körper
- Gerinneströmmungen

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung, Übung, Tutorien: 90 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen, Übungen: 45 Std.
- Bearbeitung der Hausarbeiten: 15 Std.
- Prüfungsvorbereitung: 30 Std.

Summe: 180 Std.

Empfehlungen
folgende Module sollten bereits abgeschlossen worden sein:
- Analysis und Lineare Algebra [bauiBGP05-HM1]
- Integralrechnung und Funktionen mehrerer Veränderlicher [bauiBGP06-HM2]
- Statik starrer Körper [bauiBGP01-TM1]

Ingenieurepädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Literatur
2.50 Modul: Informatik [M-MACH-105449]

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105205 Informatik im Maschinenbau</td>
<td>6 LP</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>T-MACH-105206 Informatik im Maschinenbau, VL</td>
<td>0 LP</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111001 Informatik im Maschinenbau, Seminar</td>
<td>2 LP</td>
<td>Elstermann, Ovtcharova</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftlich: "Informatik im Maschinenbau", 100%, 180 Minuten; Prüfungszulassung durch bestandenes Rechnerpraktikum. Seminararbeit.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Prüfungsergebnis "Informatik im Maschinenbau" 100%

Arbeitsaufwand
Präsenzzzeit: 63 Stunden
Selbststudium: 177 Stunden

Lehr- und Lernformen
Vorlesung, Rechnerpraktikum, Seminararbeit.
2.51 Modul: Informationsfusion [M-ETIT-103264]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte 4
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-ETIT-106499 Informationsfusion 4 LP Heizmann

Erfolgskontrolle(n)

Voraussetzungen
keine

Qualifikationsziele

- Studierende haben fundiertes Wissen in unterschiedlichen Methoden zur Spezifizierung von unsicherheitsbehaftetem Wissen und zu dessen Aufarbeitung zum Zweck der Informationsfusion.
- Studierende beherrschen unterschiedliche Konzepte der Informationsfusion hinsichtlich ihrer Voraussetzungen, Modellannahmen, Methoden und Ergebnisse.
- Studierende sind in der Lage, Aufgaben der Informationsfusion zu analyseren und formal zu beschreiben, Lösungsmöglichkeiten zu synthetisieren und die Eignung der unterschiedlichen Ansätze der Informationsfusion zur Lösung einzuschätzen.

Inhalt

Die Inhalte umfassen im Einzelnen:

- Voraussetzungen der Fusionierbarkeit
- Spezifikation von unsicherheitsbehafteter Information
- Vorverarbeitung zur Informationsfusion, Registrierung
- Fusionsarchitekturen
- Probabilistische Methoden: Bayes'sche Fusion, Kalman-Filter, Tracking
- Formulierung von Fusionsaufgaben mittels Energiefunktionalen
- Dempster-Shafer-Theorie
- Fuzzy-Fusion

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen bzw. mündlichen Prüfung.
Arbeitsaufwand
Gesamt: ca. 120h, davon
1. Präsenzzeit in Vorlesungen: 34h
2. Vor-/Nachbereitung der Vorlesungen: 34h
3. Klausurvorbereitung und Präsenz in selbiger: 52h

Empfehlungen
Kenntnisse der Grundlagen der Stochastik sind hilfreich.
2.52 Modul: Informationstechnik I [M-ETIT-104539]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil) (EV ab 01.10.2021)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil) (EV ab 01.10.2021)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-ETIT-109300</th>
<th>Informationstechnik I</th>
<th>4 LP</th>
<th>Sax</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109301</td>
<td>Informationstechnik I - Praktikum</td>
<td>3 LP</td>
<td>Sax</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus:

1. Einer "schriftlichen Prüfung" im Umfang von 120 Minuten zu den Lehrveranstaltungen Vorlesung, Übung (4 LP)
2. Einer Erfolgskontrolle in Form von Projektdokumentationen und Kontrolle des Quellcodes im Rahmen der Lehrveranstaltung Praktikum (2 LP)

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden lernen Aufbau und Funktionsweise informationstechnischer Systeme und deren Verwendung kennen.

Die Studierenden können:

- die Charakteristika von eingebetteten Systemen abgrenzen.
- verschiedene Programmiersprachen und -paradigmen nennen und deren Unterschiede gegenüberstellen.
- die Grundbestandteile der Programmiersprache C++ erläutern sowie Programme in dieser Sprache anfertigen.
- die zur Erstellung eines ausführbaren Programms notwendigen Komponenten aufzählen und deren Interaktion beschreiben.
- Programmstrukturen mit Hilfe grafischer Beschreibungsmittel darstellen.
- das objektorientierte Programmierparadigma gegenüber traditioneller Herangehensweise abgrenzen sowie objektorientierte Programme erstellen.
- die Struktur objektorientierter Programme grafisch abbilden
- generelle Rechnerarchitekturen beschreiben, deren Vor- und Nachteile gegenüberstellen, sowie Möglichkeiten zur Performanzsteigerung erläutern.
- unterschiedliche Abstraktionsebenen der Datenspeicherung beschreiben. Sie können verschiedene Möglichkeiten, Daten strukturiert abzuspeichern und zu organisieren, nennen und bewerten.
- die Aufgaben eines Betriebssystems beschreiben, sowie die grundlegenden Funktionen von Prozessen und Threads wiedergeben.
- die Phasen und Prozesse des Projektmanagements erläutern und die Planung kleiner Projekte skizzieren.

Durch die Teilnahme am Praktikum Informationstechnik können die Studierenden komplexe programmiertechnische Probleme in einfache und übersichtliche Module zerlegen und dazu passende Algorithmen und Datenstrukturen entwickeln, sowie diese mit Hilfe einer Programmiersprache in ein ausführbares Programm umsetzen.
Inhalt
Vorlesung Informationstechnik I:
Grundlagenvorlesung Informationstechnik. Schwerpunkte der Veranstaltung sind:

• Programmiersprachen, Programmerstellung und Programmstrukturen
• Objektorientierung
• Rechnerarchitekturen und eingebettete Systeme
• Datenstrukturen und Datenbanken
• Projektmanagement
• Betriebssysteme und Prozesse

Übung Informationstechnik I:

Praktikum Informationstechnik:
Bei der Umsetzung in einen strukturierten und lauffähigen Quellcode, unter Einhaltung von vorgegebenen Qualitätskriterien, wird das Schreiben komplexer C/C++-Codeabschnitte und der Umgang mit einer integrierten Entwicklungsumgebung trainiert. Die Implementierung erfolgt auf einem Microcontrollerboard, welches bereits aus anderen Lehrveranstaltungen bekannt ist.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung. Das erfolgreiche Ablegen des Praktikums ist Voraussetzung für das Bestehen des Moduls.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht. Unter den Arbeitsaufwand fallen:

1. Präsenzzeit in 14 Vorlesungen und 7 Übungen (32 Stunden)
2. Vor-/Nachbereitung von Vorlesung und Übung (42 Stunden)
3. Klausurvorbereitung und Präsenz in selbiger (46 Stunden)
4. Praktikum Informationstechnik 5 Termine (7,5 Stunden)
5. Vor-/Nachbereitung des Praktikums (52,5 Stunden)
Summe: 180 h = 6 LP

Empfehlungen
• Kenntnisse in den Grundlagen der Programmierung sind empfohlen (Besuch des MINT-Kurs C++).
• Die Inhalte des Moduls Digitaltechnik sind hilfreich.
M 2.53 Modul: Informationstechnik in der industriellen Automation [M-ETIT-100367]

Verantwortung: Dr.-Ing. Peter-Axel Bort

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte: 3

Notenskala: Zehntelnoten

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

Pflichtbestandteile

T-ETIT-100698 Informationstechnik in der industriellen Automation 3 LP Bort

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20-25 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

keine

Qualifikationsziele

Inhalt

Ein weiterer Schwerpunkt liegt in dem Bereich Anlagenprojektierung, Systemintegration und Vernetzung, bis zu cloudbasierten Lösungen. Dabei werden verschiedene Modellierungsansätze und Werkzeuge für die Projektierung vorgestellt, sowie auf die Besonderheiten der Systemintegration in der Anlagenautomatisierung eingegangen, wie z.B. die hohe Zahl von unterschiedlichen Schnittstellen, die unterschiedlichen Lebenszyklen von Einzelkomponenten, Subsystemen und Anlagenteilen oder die extremen Anforderungen an die funktionale Sicherheit und Verfügbarkeit der Anlagen.

Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der mündlichen Prüfung.

Anmerkungen

Es finden 7 Vorlesungstermine statt. Diese werden in der Vorlesung bekannt gegeben.

Arbeitsaufwand

Der Arbeitsaufwand gliedert sich wie folgt:

- Präsenzzeit Vorlesung: 7 * 4 h = 28 h
- Vor-/Nachbereitung Vorlesung: 7 * 4 = 28 h
- Präsenzzeit Übung: 0 h
- Vor-/Nachbereitung Übung (SPS-Programmierung mit Codesys): 4 h
- Klausurvorbereitung und Präsenz in Prüfung: 30 h (alternativ: in Vor-/Nachbereitung verrechnet)
- Insgesamt: 90 h -> 90/30 LP = 3 LP
2.54 Modul: Integralrechnung und Funktionen mehrerer Veränderlicher [M-MATH-101714]

Verantwortung: Prof. Dr. Marlis Hochbruck
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-MATH-103324 | Integralrechnung und Funktionen mehrerer Veränderlicher - Klausur | 9 LP | Grimm, Hochbruck, Neher |

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (90 min.)

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
- Integralrechnung einer Veränderlichen
- Numerische Integration - uneigentliche Integrale
- Anwendungen der Integralrechnung
- Funktionen mehrerer Veränderlicher
- Differentialrechnung mehrerer Veränderlicher
- Extremwerte ohne und mit Nebenbedingungen
- Satz von Taylor - Newton-Verfahren - Kurvenintegrale
- Bereichsintegrale (auch mehrdimensional)
- Flächenintegrale 1. Art.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung, Tutorium: 120 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 60 Std.
- Prüfungsvorbereitung: 90 Std.

Summe: 270 Std.

Empfehlungen
Das Modul Analysis und Lineare Algebra [M-MATH-101716] sollte bereits belegt worden sein.
M 2.55 Modul: Laborpraktikum (bauiBGW6-LABOR) [M-BGU-101763]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-BGU-103403</th>
<th>Laborpraktikum</th>
<th>2 LP</th>
<th>Vortisch</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103403 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können Laborversuche durchführen und beachten dabei wissenschaftliche Grundsätze. Je nach den ausgewählten Versuchen können sie die dabei verwendeten Messmethoden einsetzen und sind in der Lage, Messergebnisse zu analysieren, zu beschreiben und kritisch zu hinterfragen.

Inhalt
aus allen Schwerpunkten werden in mehreren Blöcken Laborpraktika angeboten:

- Konstruktiver Ingenieurbau
- Wasser und Umwelt
- Mobilität- und Infrastruktur
- Technologie und Management im Baubetrieb
- Geotechnisches Ingenieurwesen

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
Für einige Versuche sind Gruppengrößen vorgegeben (Mindest- bzw. Maximalteilnehmerzahl).

Arbeitsaufwand
Präsenzzeit:

- Laborarbeit (4 x 2 x 4 Std.): 32 Std.

Selbststudium:

- Versuchsausarbeitung: 24 Std.

Summe: 56 Std.

Empfehlungen
keine
Modul: Leistungselektronik [M-ETIT-100533]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 2

Pflichtbestandteile

| Leistungselektronik | T-ETIT-100801 | 5 LP | Becker |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Keine

Qualifikationsziele

Inhalt
In der Vorlesung werden leistungselektronische Schaltungen mit Transistoren und abschaltbaren Thyristoren vorgestellt und analysiert. Schaltung, Funktion und Steuerung werden eingehend behandelt. Zunächst werden die grundlegenden Eigenschaften selbstgeführter Schaltungen unter idealisierten Verhältnissen am Beispiel des Gleichstromstellers erarbeitet. Anschließend werden selbstgeführte Stromrichter für Drehstromanwendungen vorgestellt und analysiert. Die Behandlung der Spannungs- und Strombeanspruchung der Leistungshalbleiter sowie der Schutzmaßnahmen berücksichtigt die in der Realität auftretenden Belastungen und bildet die Grundlage für die Auslegung selbstgeführter Stromrichter. Im Einzelnen werden folgende Themengebiete behandelt:
- Gleichstromsteller,
- selbstgeführte Wechselstrombrückenschaltung,
- selbstgeführte Drehstrombrückenschaltung,
- Blocksteuerung,
- Sinus-Dreieck-Modulation,
- Raumzeigermodulation,
- Mehrpunktwechselrichter,
- weich schaltende Umrichter,
- Schwingkreiswechselrichter,
- Schaltungen mit Zwangskommutierung,
- Strom- und Spannungsbeanspruchung der Halbleiter im Gleichstromsteller und der selbstgeführten Drehstrombrückenschaltung,
- Schutzmaßnahmen.

Der Dozent behält sich vor, die Inhalte der Vorlesung ohne vorherige Ankündigung an den aktuellen Bedarf anzupassen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
13x V + 7x Ü à 1,5 h = 30 h
13x Nachbereitung zu V à 1 h = 13 h
7x Vorbereitung zu Ü à 2 h = 14 h
Vorbereitung zur Prüfung = 78 h
Klausur = 2 h
Summe = 137 h (entspricht 5 LP)
Empfehlungen
Kenntnisse zu den Grundlagen der LV "Elektrische Maschinen und Stromrichter" und "Hochleistungsstromrichter" sind hilfreich.
Modul: Lineare Elektrische Netze [M-ETIT-104519]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil) (EV ab 01.10.2021)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil) (EV ab 01.10.2021)

Leistungspunkte: 9
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 1
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Code</th>
<th>Name</th>
<th>Bearbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109316</td>
<td>7</td>
<td>Lineare Elektrische Netze</td>
<td>Dössel</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109317</td>
<td>1</td>
<td>Lineare Elektrische Netze - Workshop A</td>
<td>Leibfried, Lemmer</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109811</td>
<td>1</td>
<td>Lineare Elektrische Netze - Workshop B</td>
<td>Dössel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus drei unabhängigen Teilen:
1. In einer schriftlichen Prüfung im Umfang von 120 Minuten werden die Inhalte der Lehrveranstaltung Lineare Elektrische Netze (7 LP) geprüft. Bei bestandener Prüfung können Studierende einen Notenbonus von bis zu 0,4 Notenpunkten erhalten, wenn zuvor semesterbegleitend zwei Projektaufgaben erfolgreich bearbeitet wurden. Die Bearbeitung der Projektaufgaben wird durch die Abgabe einer Dokumentation oder des Projektcodes nachgewiesen.
2. Schriftliche Ausarbeitung zu Lehrveranstaltung Lineare Elektrische Netze – Workshop A, (1 LP)
3. Schriftlichen Ausarbeitung zu Lehrveranstaltung Lineare Elektrische Netze – Workshop B, (1 LP)

Voraussetzungen
keine

Qualifikationsziele
Im Modul Lineare Elektrische Netze erwerbt der Studierende Kompetenzen bei der Analyse und dem Design von elektrischen Schaltungen mit linearen Bauelementen mit Gleichstrom und Wechselstrom. Hierbei ist er in der Lage, die Themen zu erinnern und zu verstehen, zudem die behandelten Methoden anzuwenden, um hiermit die elektrischen Schaltungen mit linearen Bauelementen zu analysieren und deren Relevanz, korrekte Funktion und Eigenschaften zu beurteilen.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, grundlegende einfache Problemstellungen aus der Elektrotechnik (z.B. Messtechnik, analoge Schaltungsstechnik) zu erkennen sowie praxis- und entscheidungsrelevant Lösungsansätze zu erarbeiten.
Inhalt
In der Lehrveranstaltung Lineare Elektrische Netze werden die folgenden Themen behandelt:

- Methoden zur Analyse komplexer linearer elektrischer Schaltungen
- Definitionen von U, I, R, L, C, unabhängige Quellen, abhängige Quellen
- Kirchhoff'sche Gleichungen, Knotenpunkt-Potential-Methode, Maschenstrom-Methode
- Ersatz-Stromquelle, Ersatz-Spannungsquelle, Stern-Dreiecks-Transformation, Leistungsanpassung
- Operationsverstärker, invertierender Verstärker, Addierer, Spannungsfolger, nicht-invertierender Verstärker, Differenzverstärker
- Sinusförmige Ströme und Spannungen, Differentialgleichungen für L und C, komplexe Zahlen
- Beschreibung von RLC-Schaltungen mit komplexen Zahlen, Impedanz, komplexe Leistung, Leistungsanpassung
- Brückenschaltungen, Wheatstone-, Maxwell-Wien- und Wien-Brückenschaltungen
- Serien- und Parallel-Schwingkreise
- Vierpoltheorie, Z, Y und A-Matrix, Impedanztransformation, Ortskurven und Bodediagramm
- Transformator, Gegeninduktivität, Transformator-Gleichungen, Ersatzschaltbilder des Transformators
- Drehstrom, Leistungsübertragung und symmetrische Last

In Workshop A werden die Studierenden in die aktuelle Thematik rund um erneuerbare Energiequellen eingeführt. Hierfür wird eine Solarzelle verwendet und mit Anleitung unterschiedliche praxisnahe Szenarien realisiert, um die Eigenschaften von Photovoltaik und die Vorteile eines Energiespeichers kennenzulernen. Durch die Aufgabenstellung sind die optimale Ausnutzung regenerativer Energiequellen oder die Einfüsse auf Solarmodule durch Abschattung zu untersuchen. Darüber hinaus wird durch einen Langzeitversuch den Studierenden die grundlegenden Funktionen von MATLAB nähergebracht und die Möglichkeiten eines Datenloggers aufgezeigt.

Zusammensetzung der Modulnote

Anmerkungen
Achtung: Dieses Modul ist Bestandteil der Orientierungsprüfung nach SPO Bachelor Elektrotechnik und Informationstechnik.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Unter den Arbeitsaufwand der LV Lineare Elektrische Netze fallen

1. Präsenzzeit in Vorlesungen, Übungen
2. Vor-/Nachbereitung
3. Klausurvorbereitung und Präsenz in selbiger

Der Arbeitsaufwand für Punkt 1 entspricht etwa 60 Stunden, für die Punkte 2-3 etwa 115 -150 Stunden. Insgesamt beträgt der Arbeitsaufwand für die LV Lineare Elektrische Netze 175-210 Stunden. Dies entspricht 7 LP.

Der Arbeitsaufwand eines Workshops setzt sich wie folgt zusammen:

1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2h
2. Bearbeitung der Aufgabenstellung: 23h
3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht jeweils 1 LP.
2.58 Modul: Management und Marketing [M-WIWI-105768]

Verantwortung: Prof. Dr. Martin Klarmann
Prof. Dr. Hagen Lindstädt
Prof. Dr. Petra Nieken
Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Kürzel</th>
<th>Titel</th>
<th>Lehrveranstaltungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111594</td>
<td>5</td>
<td>Klarmann, Lindstädt, Nieken, Terzidis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

Der/die Studierende

• besitzt grundlegende Kenntnisse in zentralen Fragestellungen der Betriebswirtschaftslehre,
• hat ein Verständnis für Probleme, Zusammenhänge und Lösungen des strategischen Managements,
• ist in der Lage zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlich operierenden Unternehmung zu analysieren und zu bewerten,
• besitzt einen Überblick über wichtige marketingrelevante Fragestellungen und fundierte Ansätze zu deren Lösung.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt

Es wird ein Verständnis für die grundlegenden Funktionen des Managements von Unternehmen geschaffen. Zudem werden die Grundlagen des Marketing vermittelt.

Arbeitsaufwand

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
2.59 Modul: Maschinen und Prozesse [M-MACH-105450]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Wahlpflichtbereich Metalltechnik)

Leistungspunkte 8
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110993</td>
<td>Maschinen und Prozesse</td>
<td>7</td>
<td>Kubach</td>
</tr>
<tr>
<td>T-MACH-110994</td>
<td>Maschinen und Prozesse, Vorleistung</td>
<td>1</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Klausur (2 h)

Voraussetzungen
Keine.

Qualifikationsziele
Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen.

Inhalt
- Verbrennungsmotoren
- thermische Strömungsmaschinen
- hydraulische Strömungsmaschinen
- Thermodynamik

Zusammensetzung der Modulnote
Notenbildung zu 100% aus o.g. schriftl. Prüfung

Arbeitsaufwand
Präsenz: 48 h
Selbststudium: 192 h

Lehr- und Lernformen
Vorlesung+Übung
Praktikum
2.60 Modul: Maschinenkonstruktionslehre (CIW-MACH-02) [M-MACH-101299]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
- Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
- Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
- Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte: 9

Notenskala: Zehntelnoten

Turnus: Jedes Wintersemester

Dauer: 2 Semester

Sprache: Deutsch

Level: 3

Version: 3

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110363</td>
<td>Maschinenkonstruktionslehre Grundlagen I und II</td>
<td>7 LP Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110364</td>
<td>Maschinenkonstruktionslehre Grundlagen I, Vorleistung</td>
<td>1 LP Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110365</td>
<td>Maschinenkonstruktionslehre Grundlagen II, Vorleistung</td>
<td>1 LP Matthiesen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Schriftliche Prüfung über die Inhalte von Maschinenkonstruktionslehre I&II
- Dauer: 90 min zzgl. Einleszeit
- Prüfungsvorleistung: Erfolgreiche Teilnahme an den Vorleistungen im Lehrgebiet Maschinenkonstruktionslehre I&II

Voraussetzungen

Keine
Qualifikationsziele

Lernziel Federn:

- Federarten erkennen können und Beanspruchung erklären können
- Eigenschaften einer federnden LSS in später vorgestellten Maschinenelementen erkennen und beschreiben können
- Wirkprinzip verstehen und erklären können
- Einsatzgebiete von Federn kennen und aufzählen
- Belastung und daraus resultierende Spannungen graphisch darstellen können
- Artnutzgrad als Mittel des Leichtbaus beschreiben können
- Verschiedene Lösungsvarianten bezüglich Leichtbau analysieren können (Artnutzungsgrad einsetzen)
- Mehrere Federn als Schaltung erklären können und Gesamtfederversteifigkeit berechnen können

Lernziel technische Systeme:

- Erklären können, was ein technisches System ist
- „Denken in Systemen“
- Systemtechnik als Abstraktionsmittel zur Handhabung von Komplexität anwenden
- Funktionale Zusammenhänge technischer Systeme erkennen
- Den Funktionsbegriff kennen lernen
- C&C²-A als Mittel der Systemtechnik anwenden können

Lernziel Visualisierung:

- Prinzipskizzen erstellen und interpretieren können
- Technische Freihandzeichnung als Mittel zur Kommunikation anwenden
- Die handwerklichen Grundlagen des technischen Freihandzeichnens anwenden können
- Ableitung von 2D-Darstellungen in unterschiedliche perspektivische Darstellungen technischer Gebilde und umgekehrt
- Lesen von technischen Zeichnungen beherrschen
- Zweckgerichtet technische Zeichnungen bemäßen
- Schnittdarstellungen technischer Systeme als technische Skizze erstellen können

Lernziel Lagerungen:

- Lagerungen in Maschinensystemen erkennen und in ihre Grundfunktionen erklären können
- Lager (Typ/Bauart/Funktion) nennen und in Maschinensystemen und Technischen Zeichnungen erkennen können
- Einsatzbereiche und Auswahlkriterien für die verschiedenen Lager und Lagerungen nennen und Zusammenhänge erklären können
- Gestaltung der Festlegungen der Lager in verschiedenen Richtungen radial/axial und in Umfangsrichtung funktional erklären können
- Auswahl als iterativen Prozess exemplarisch kennen und beschreiben können
- Dimensionierung von Lagerungen exemplarisch für die Vorgehensweise des Ingenieurs bei der Dimensionierung von Maschinenelementen durchführen können
- Erste Vorstellungen für Wahrscheinlichkeiten in der Vorhersage von Lebensdauern von Maschinenelementen entwickeln
- Am Schädigungsbild erkennen können, ob statische oder dynamische Überlast Grund für Werkstoffversagen war
- Äquivalente statische und dynamische Lagerlasten aus Katalog und gegebenen äußeren Kräften auf das Lager berechnen können
- Grundgleichung der Dimensionierung nennen, erklären und auf die Lagerdimensionierung übertragen können

Lernziele Dichtungen:

Die Studierenden... können das grundlegende Funktionsprinzip von Dichtungen diskutieren.
können die physikalischen Ursachen eines Stoffüberganges beschreiben.
können das C&C-Modell auf Dichtungen anwenden
können die drei wichtigsten Klassierungskriterien von Dichtungen nennen, erläutern und anwenden
können die Funktionsweise einer berührungsfreien und einer berührenden Dichtung verdeutlichen
können die Dichtungsbauformen unterscheiden, bestimmen und den Klassierungskriterien zuordnen
können den Aufbau und die Wirkungsweise eines Radialwellenrings diskutieren.
können statische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
können dynamische, rotatorische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
können translatorische Dichtungen anhand verschiedener Auswahlkriterien bewerten.
können das Konstruktionsprinzip „Selbstverstärkung“ beschreiben und an einer Dichtung anwenden.
können den Stickslip anhand des Bewegungsablaufs einer translatorischen Dichtung erklären

Lernziele Gestaltung:

Die Studierenden...
können die Grundregeln der Gestaltung und Gestaltungsprinzipien in konkreten Problemen anwenden
können die Prozessphasen der Gestaltung verstanden
können Teilsysteme in ihrer Einbindung in das Gesamtsystem gestalten
können Anforderungsbereiche an die Gestaltung nennen und berücksichtigen
können die Hauptgruppen der Fertigungsverfahren
können die Fertigungsprozesse und können diese erklären
können die Auswirkung der Werkstoffwahl und des Fertigungsverfahren in einer Konstruktionszeichnung berücksichtigen und erkennbar abbilden.

Lernziele Schraubenverbindungen:

Die Studierenden...

können die Grundregeln der Gestaltung und Gestaltungsprinzipien in konkreten Problemen anwenden
können die Prozessphasen der Gestaltung verstanden
können Teilsysteme in ihrer Einbindung in das Gesamtsystem gestalten
können Anforderungsbereiche an die Gestaltung nennen und berücksichtigen
können die Hauptgruppen der Fertigungsverfahren
können die Fertigungsprozesse und können diese erklären
können die Auswirkung der Werkstoffwahl und des Fertigungsverfahren in einer Konstruktionszeichnung berücksichtigen und erkennbar abbilden.

Inhalt

MKL I:
Einführung in die Produktentwicklung
Werkzeuge zur Visualisierung (Techn. Zeichnen)
Produkterstellung als Problemlösung
Technische Systeme Produkterstellung

• Systemtheorie
• Contact and Channel Approach C&C²-A

Grundlagen ausgewählter Konstruktions- und Maschinenelemente

• Federn
• Lagerung und Führungen
• Dichtungen

Begleitend zur Vorlesung finden Übungen statt, mit folgenden Inhalt:
Getriebeworkshop
Werkzeuge zur Visualisierung (Techn. Zeichnen)

Technische Systeme Produkterstellung

• Systemtheorie
• Contact and Channel Approach C&C²-A

Federn
Lagerung und Führungen

MKL II:

• Dichtungen
• Gestaltung
• Dimensionierung
• Bauteilverbindingen
• Schrauben
Arbeitsaufwand
MKL1:
Präsenz: 33,5 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 8 * 1,5 h = 12 h
Selbststudium: 56,5 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 56,5 h
Insgesamt: 90 h = 3 LP
MKL2:
Präsenz: 33 h
Anwesenheit in Vorlesungen: 15 * 1,5 h = 22,5 h
Anwesenheit in Übungen: 7 * 1,5 h = 10,5 h
Selbststudium: 87 h
Persönliche Vor- und Nachbereitung von Vorlesung und Übung inkl. Bearbeitung der Testate und Vorbereitung auf die Klausur: 87h
Insgesamt: 150 h = 5 LP

Mehraufwand für Fachfremde Studiengänge MKL1 + MKL2 insgesamt: 30 h = 1 LP
(Wirtschaftsingenieurwesen Bachelor 2015, Chemieingenieurwesen und Verfahrenstechnik Bachelor 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 2015, Ingenieurpädagogik LA Bachelor Berufliche Schulen 20151)

Lehr- und Lernformen
Vorlesung
Hörsaalübung
Semesterbegleitende Projekarbeit
Online-Test
2.61 Modul: Mess- und Regelungstechnik [M-MACH-105451]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Wahlpflichtbereich Metalltechnik)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Wahlpflichtbereich Metalltechnik)

Leistungspunkte 8
Notenskala
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-MACH-110988 Grundlagen der Mess- und Regelungstechnik 8 LP Stiller

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 150 Minuten

Voraussetzungen
keine

Qualifikationsziele
- Die Studierenden können mess- und regelungstechnische Prinzipien für physikalische Größen benennen, beschreiben und an Beispielen erläutern.
- Sie können systemtheoretische Eigenschaften von dynamischen Systemen benennen, analysieren und bewerten.
- Sie können reale Systeme systemtheoretisch modellieren und die Eignung aufgestellter Modelle bewerten.
- Sie können Methoden zur Synthese von Reglern anwenden und so parametrisierte Regler analysieren und bewerten.
- Sie können Messprinzipien auswählen und Messeinrichtungen zur Messung nicht-elektrischer Größen modellieren, analysieren und bewerten.
- Sie können die Messunsicherheiten von Messgrößen quantifizieren und beurteilen.

Inhalt
1. Dynamische Systeme
2. Eigenschaften wichtiger Systeme und Modellbildung
3. Übertragungsverhalten und Stabilität
4. Synthese von Reglern
5. Grundbegriffe der Messtechnik
6. Estimation
7. Messaufnehmer
8. Einführung in digitale Messverfahren

Zusammensetzung der Modulnote
Note der Prüfung

Arbeitsaufwand
84 Stunden Präsenzzeit, 156 Stunden Selbststudium.

Lehr- und Lernformen
Vorlesung
Übungen
2.62 Modul: Messtechnik [M-ETIT-102652]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 5

Pflichtbestandteile

| T-ETIT-101937 | Messtechnik | 5 LP | Heizmann |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Qualifikationsziele
Mit Abschluss des Moduls besitzen die Studierenden erweiterte Kenntnisse auf dem Gebiet der Messtechnik. Sie sind in der Lage, reale Messsysteme mathematisch zu beschreiben, zu analysieren sowie Methoden zur Fehlerkompensation, der Signalrekonstruktion und -detektion anzuwenden.

Inhalt
Die Vorlesung behandelt die formalen, methodischen und mathematischen Grundlagen zur Analyse und zum Entwurf von realen Messsystemen. Schwerpunkte der Veranstaltung sind:

- Kurvenanpassung
- Stationären Verhalten von Messsystemen (Messkenmlinie, Kennlinienfehler)
- Zufällige Messfehler (Wahrscheinlichkeitsrechnung, Stichproben, statistische Testverfahren, Fehlerfortpflanzung)
- Korrelationsmesstechnik (stochastische Prozesse, Systemidentifikation, Matched-Filter, Wiener-Filter)
- Parameterschätzung (Least-Squares-Schätzer, Maximum-Likelihood-Schätzer, Gauß-Markov-Schätzer)
- Digitalisierung analoger Signale (Abtastung, Quantisierung und damit verbundene Fehler)
- Frequenz- und Drehzahldiagnostik (Peridodendauermessung, Frequenzmessung)

Hinweis: Der Dozent behält sich vor, im Rahmen der aktuellen Vorlesung ohne besondere Ankündigung vom hier angegebenen Inhalt abzuweichen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen
"Messtechnik" und "Messtechnik in der Mechatronik" werden ab dem Wintersemester 2020/2021 zusammengeführt. Titel des Moduls für Studierende, die das Modul ab WS 20/21 neu beginnen, ist "Messtechnik".

Veranstaltungstermine entnehmen Sie bitte dem Vorlesungsverzeichnis.

Dieses Modul kann in den englischsprachigen Vertiefungsrichtungen durch ein anderes Modul ersetzt werden. Bitte sprechen Sie mit Ihrem Fachstudienberater, welches Ersatzmodul hier geeignet ist.

Ab WS2021/2022 wird das Modul auf Englisch angeboten.

Arbeitsaufwand
Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und der 14-tägig stattfindenden Übung sowie die Vorbereitung (40-50 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 130-140 h.

Empfehlungen
- Signale und Systeme
- Wahrscheinlichkeitsrechnung
2.63 Modul: Mikrosystemtechnik [M-ETIT-100454]

Verantwortung: Prof. Dr. Wilhelm Stork
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte 3
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-ETIT-100752 Mikrosystemtechnik 3 LP Stork

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden

- Kennen die wichtigsten Begriffe und Verfahren der Mikrosystemtechnik und können diese mit ihren Vor- und Nachteilen beurteilen.
- Sind in der Lage, die gängigen Methoden und Werkzeuge zu beschreiben.
- Können geeignete Verfahren für die Herstellung von Mikrosystemen auswählen.
- Besitzen ein weitreichendes Verständnis über den Aufbau und die Funktionsweise von Mikrosystemtechnischen Sensoren.
- Besitzen die Fähigkeit sich mit Experten der Mikrotechnologie verständigen zu können.
- Sind in der Lage, verschiedene Verfahren der Mikrosystemtechnik kritisch zu beurteilen.

Inhalt
Es werden die Methoden der Mikrostrukturtechnik von Lithographie und Ätztechniken bis hin zu ultrapräzisen spanabhebenden Verfahren erläutert und deren Anwendungen vor allem in Mikromechanik und Mikrooptik vorgestellt.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 18 h
2. Vor-/Nachbereitung derselbigen: 24 h
3. Klausurvorbereitung und Präsenz in selbiger: 25h
2.64 Modul: Mobilität und Infrastruktur (bauiBF5-MOBIN) [M-BGU-103486]

Verantwortung: Prof. Dr.-Ing. Ralf Roos
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 12
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
- T-BGU-106832 Studienarbeiten Verkehrswesen 0 LP Vortisch
- T-BGU-106833 Studienarbeiten Straßenwesen 0 LP Roos
- T-BGU-101791 Mobilität und Infrastruktur 12 LP Roos, Vortisch

Erfolgskontrolle(n)
- Teilleistung T-BGU-106832 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-106833 mit einer unbenoteten Studienleistung nach § 4 Abs. 3 als Prüfungsvorleistung
- Teilleistung T-BGU-101791 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1

Einzelheiten zu den Erfolgskontrollen siehe bei der jeweiligen Teillieistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können die grundlegenden Methoden und Verfahren zur Bearbeitung allgemeiner Fragestellungen in der Raumplanung, im Verkehrswesen und im Straßenwesen benennen und erläutern. Sie sind in der Lage, bezogen auf die genannten Fachgebiete grundlegende Berechnungen durchzuführen und die nötigen Hilfsmittel hierfür methodisch angemessen zu gebrauchen. Weiterhin können sie fachbezogen argumentieren, Lösungen finden, entwickeln und bewerten.

Inhalt
Das Modul gliedert sich inhaltlich in 3 Teile:
Der Modulteil Raumplanung und Planungsrecht beinhaltet grundlegende Aufgaben und Fragestellungen unterschiedlicher Planungssebenen wie Flächennutzungen und -konflikte, Erschließung und Infrastrukturen einschließlich deren Kosten, Bauleit-, Regional- und Landesplanung sowie Planung auf europäischer Ebene.
Die Grundlagen der Verkehrsplanung (Analysekonventionen, Erhebungen, Algorithmen) sowie die Grundlagen des Verkehrsingenieurwesens werden im Modulteil Verkehrswesen behandelt.
Der Modulteil Bemessungsgrundlagen im Straßenwesen umfasst die Straßennetzgestaltung, die Trassierung von Straßen einschließlich der fahrdynamischen Grundlagen, den Erdbau sowie Fahrbahnkonstruktionen und deren Bemessung.

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
Keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Raumplanung und Planungsrecht Vorlesung, Übung: 45 Std.
- Verkehrsweisen Vorlesung, Übung: 45 Std.
- Bemessungsgrundlagen im Straßenwesen Vorlesung, Übung: 45 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen Raumplanung und Planungsrecht: 30 Std.
- Vor- und Nachbereitung Vorlesungen Verkehrsweisen: 15 Std.
- Vor- und Nachbereitung Vorlesungen Bemessungsgrundlagen im Straßenwesen: 15 Std.
- Anfertigung der Studienarbeiten: 80 Std.
- Prüfungsvorbereitung: 80 Std.

Summe: 355 Std.

Empfehlungen
keine
Erfolgskontrolle(n)
Die Bachelorarbeit besteht dabei in der selbständigen Bearbeitung und Dokumentation einer kleineren Forschungsfrage der Beruflichen Fachrichtung. Die Dokumentation umfasst ca. 50-60 Seiten.

Voraussetzungen
Nachweis von 120 LP gemäß § 20 der SPO Ingenieurpädagogik B.Sc.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. In diesem Studiengang müssen in Summe mindestens 120 Leistungspunkte erbracht worden sein.

Qualifikationsziele
Fachliche Kompetenzen:
Die Studierenden können
- kleinere Forschungsprojekte im Bereich der Beruflichen Fachrichtung planen, durchführen und dokumentieren
- die wissenschaftlichen Ansprüche an die Erstellung einer umfangreicher wissenschaftlichen Ausarbeitung interpretieren und anwenden
- die Ausarbeitungen von Kommilitonen rezipieren, erörtern und nach Aspekten der formalen wissenschaftlichen Betrachtung einordnen
- umfangreichere wissenschaftliche Ausarbeitungen zu einem spezifischen Thema erstellen.

Inhalt
Die Studierenden bearbeiten in diesem Modul eine kleinere Forschungsfrage ihrer Beruflichen Fachrichtung. Dies können z.B. sein:
- ingenieurwissenschaftliche Problemstellungen
- (umfangreiche) Arbeitsprozessstudien

Zusammensetzung der Modulnote
Die Gesamtnote des Moduls ergibt sich aus der Note der Bachelor-Arbeit.

Anmerkungen
Die Bachelorarbeit ist in § 14 der SPO Ingenieurpädagogik B.Sc. geregelt. Sie ist in der Beruflichen Fachrichtung anzufertigen.

Dabei ist es prinzipiell möglich, die Bachelorarbeit und das Betriebspraktikum miteinander zu verbinden, sofern damit die Ziele beider Module erreicht werden. Dafür ist ein Antrag an den Prüfungsausschuss zu stellen.

Sofern die Bachelorarbeit außerhalb der Fakultäten Bauingenieur-, Geo- und Umweltwissenschaften (bei der Beruflichen Fachrichtung Bautechnik), Elektrotechnik und Informationstechnik (bei der Beruflichen Fachrichtung Elektrotechnik) oder der Fakultät für Maschinenbau (bei der Beruflichen Fachrichtung Maschinenbau) angefertigt werden soll, ist ein Antrag an den Prüfungsausschuss zu stellen.

Arbeitsaufwand
Selbststudienzeiten
Prüfung(en) / Erfolgskontrolle(n) 300 h
Summe 300 h
Die Prüfsungszeiten beziehen sich auf das Bearbeiten der Forschungsfrage und das Anfertigen der Bachelor-Arbeit.
2.66 Modul: Nachrichtentechnik I [M-ETIT-102103]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte Notenskala Turnus Dauer Sprache Level Version
6 Zehntelnoten Jedes Wintersemester 1 Semester Deutsch 2 2

Pflichtbestandteile

T-ETIT-101936 Nachrichtentechnik I 6 LP Schmalen

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen
keine

Qualifikationsziele
Die Studentinnen und Studenten können Probleme im Bereich der Nachrichtentechnik beschreiben und analysieren.

Durch Anwendung der erlernten Methoden können Studierende die Vorgänge in Nachrichtentechnischen Systemen erfassen, beurteilen und verwendete Algorithmen und Techniken bzgl. ihrer Leistungsfähigkeit vergleichen.

Inhalt
Die Vorlesung stellt eine Einführung in die Nachrichtentechnik auf der Basis mathematischer und systemtheoretischer Grundkenntnisse dar. Das erste Kapitel behandelt Signale und Systeme im komplexen Basisband und zeigt, dass wesentliche Teile der Signalverarbeitung in der (rechentechnisch oft günstigeren) äquivalenten Tiefpassdarstellung ausgeführt werden können. Im zweiten Kapitel werden die Grundbegriffe der Shannonschen Informationstheorie eingeführt, wobei besonderer Wert auf die Definitionen der Information und der Kanalkapazität gelegt wird. Im dritten Kapitel werden Übertragungskanäle der Funkkommunikation besprochen.

Das vierte Kapitel stellt die Aufgaben der Quellencodierung vor und beschreibt deren praktischen Einsatz am Beispiel der Fax-Übertragung. Die Kapitel fünf und sechs sind der Kanalcodierung gewidmet. Im ersten Teil werden, nach allgemeinen Aussagen über die Kanalcodierung, Blockcodes und im zweiten Teil Faltungscodes mit dem zu ihrer Decodierung benutzten Viterbi-Algorithmus behandelt.

Kapitel zehn zeigt auf, welche Kompromisse der Entwickler eines Nachrichtenübertragungssystems eingehen muss, wenn er praktisch einsetzbare Lösungen zu erarbeiten hat. Eine besondere Rolle spielen dabei die Shannon-Schatz, bis zu der prinzipiell eine Übertragung mit beliebig kleiner Fehlerrate möglich ist, und die Bandbreite-Effizienz, bei den bekannten Lizenzkosten natürlich ein wichtiges Gütekriterium für eine Übertragung. Das Kapitel elf behandelt Multiple Input Multiple Output (MIMO). Die MIMO-Verfahren, die ein Mittel zur Kapazitätssteigerung in Mobilfunknetzen darstellen, sind seit einigen Jahren ein wichtiges Thema von Forschungsvorhaben. Sie befinden sich jetzt an der Schwelle zum praktischen Einsatz. Im zwölften Kapitel werden die grundsätzlichen Vielfachzugsverfahren in Frequenz, Zeit und Code (FDMA, TDMA und CDMA) diskutiert.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen
Ab WS20/21 erstmals im Wintersemester statt im Sommersemester.
Arbeitsaufwand
1. Präsenzzeit Vorlesung: 15 * 3 h = 45 h
2. Vor-/Nachbereitung Vorlesung: 15 * 6 h = 90 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
 Insgesamt: 180 h = 6 LP

Empfehlungen
Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeits theoretie und Signale und Systeme werden benötigt.
2.67 Modul: Nachrichtentechnik II / Communications Engineering II [M-ETIT-105274]

Verantwortung: Dr.-Ing. Holger Jäkel
 Prof. Dr.-Ing. Laurent Schmalen

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik) (EV ab 01.04.2020)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala Zehntelnoten</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-ETIT-110697 Nachrichtentechnik II / Communications Engineering II 4 LP Jäkel, Schmalen

Erfolgskontrollen(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Competence Certificate

The assessment will be carried out in the form of a written exam of 120 minutes.

Voraussetzungen

Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Prerequisites

Knowledge of basic engineering mathematics including integral transformations and probability theory as well as basic knowledge of communications engineering.

Qualifikationsziele

Competence Goal

The students are able to analyze even more complex problems in communications engineering. You can independently develop and validate solutions and use problem-solving software. The transfer of the learned methods enables the students to quickly grasp other topics and to work on them with the appropriate methodological knowledge.

Inhalt

Die Lehrveranstaltung erweitert die in der Vorlesung Nachrichtentechnik I behandelten Fragestellungen. Der Fokus liegt hierbei auf der detaillierten Analyse bekannter Algorithmen und der Einführung neuer Verfahren, die nicht in der Vorlesung Nachrichtentechnik I besprochen wurden, insbesondere aus den Bereichen System- und Kanal-Modellierung, Entzerrung und Synchronisation.

Content

The course broadens the questions dealt with in the lecture Communication Engineering I. The focus here is on the detailed analysis of known algorithms and the introduction of new methods that were not discussed in the lecture Communications Engineering I, especially in the areas of system and channel modeling, equalization and synchronization.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Module grade calculation

The module grade is the grade of the written exam.

Anmerkungen

Annotations

The module can be started for the first time in summer term 2020. Please note: The German course "Nachrichtentechnik II" takes place every summer term (starting summer term 2020) and the English version "Communications Engineering II" takes place every winter term (starting winter term 2020/2021).
Arbeitsaufwand

1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
2. Vor-/Nachbereitung Vorlesung: 15 * 4 h = 60 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
 Insgesamt: 135 h = 4 LP

Workload

1. Attendance Lecture: 15 * 2 h = 30 h
2. Preparation / Postprocessing Lecture: 15 * 4 h = 60 h
3. Presence Exercise: 15 * 1 h = 15 h
4. Preparation / follow-up Exercise: 15 * 2 h = 30 h
5. Exam preparation and presence in the same: charged in preparation / follow-up
 Total: 135 h = 4 LP

Empfehlungen

Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.

Recommendation

Previous visit to the lecture "Communications Engineering I", "Probability Theory" and "Signals and Systems" is recommended
2.68 Modul: Organisation und Handlungsfelder der beruflichen Bildung (BPäd-OrgaHfBB) [M-GEISTSOZ-100639]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Berufspädagogik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-GEISTSOZ-100994</th>
<th>Handlungsfelder der beruflichen Bildung</th>
<th>2 LP</th>
<th>Gidion</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-100993</td>
<td>Recht und Organisation der beruflichen Bildung</td>
<td>4 LP</td>
<td>Döbber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Zum erfolgreichen Bestehen des Moduls ist außerdem eine Studienleistung im Seminar „Handlungsfelder der beruflichen Bildung“ zu erbringen; diese besteht aus der Vorbereitung eines Teilthemas sowie diesbezüglichem Referat und Moderation der Erörterung des Themas im Rahmen der Lehrveranstaltung; die aktive Mitwirkung im Seminar insgesamt ist Grundlage der Studienleistung.

Voraussetzungen

keine

Qualifikationsziele

Fachliche Kompetenzen:
Die Studierenden können
- aufgrund erworbbener Kenntnisse über die Strukturen des Berufsbildungssystems (Ausbildung und Weiterbildung) und eines angeeigneten Überblicks über die wesentlichen rechtlichen Bestimmungen der beruflichen Aus- und Weiterbildung diese identifizieren, einschätzen und konzeptionell in Texten verarbeiten;
- die rechtlichen Sachstrukturen der Berufsbildung erläutern und mit deren Wirkungen innerhalb der einzelnen Bereichen des Berufsbildungssystems darlegen;
- rechtliche Vorgaben in der beruflichen Bildung im Kontext berufspädagogischer Anforderungen und Ziele fachlich adäquat erörtern;
- das Spektrum der Handlungsfelder der beruflichen Bildung von der Berufsorientierung, der Berufswahl, der Ausbildung und berufsschulischen Bildung, der (systemischen) Beratung bis hin zur kontinuierlichen Weiterbildung und Lernen in der Arbeit analysieren und in differenzierter Weise beschreiben;
- unterschiedliche und gegensätzliche Lager, Interessen und Perspektiven im Bereich der Berufsbildung sowie ausgewählten Teilgebieten wie der empirischen Medienforschung zuordnen, deren Hintergründe erkunden und Sichtweisen exemplarisch selbst einnehmen, um Motive und Argumentationslinien zu verdeutlichen;
- die Entwicklung rechtlicher Übereinkünfte mit berufsbildender Ausrichtung aus den unterschiedlichen Intentionen (etwa Tarifpartner, Politik, Wissenschaft) analysieren und interpretieren.

Überfachliche Kompetenzen:
Die Studierenden können
- das Fachvokabular und formale Dokumente rezipieren und auslegen sowie hinsichtlich ihrer Bedeutung für die Berufsbildung bewerten
- in unterschiedlichen hochschuldidaktischen Settings sowohl das Fachvokabular wie auch die formalen Regelwerke in Bezug zu angewandten Aufgabenstellungen und interessegeleiteten Verhandlungen anwenden und diese Anwendung kritisch beobachten und diskursiv auswerten
- kleinere fachliche Ausarbeitungen zu wissenschaftlich relevanten Themen erstellen
Inhalt

Zusammensetzung der Modulnote
Die Note des Moduls entspricht der Note der Modulprüfung.

Arbeitssaufwand
Präsenzstundenaufwendungen
Anwesenheit 60 h
Selbststudienzeiten
Vor- und Nachbereitung 90 h
Prüfung(en) / Erfolgskontrolle(n) 30 h
Summe 180 h

Empfehlungen
keine
2.69 Modul: Orientierungsprüfung Bautechnik [M-GEISTSOZ-100889]

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103377 | Statik Starrer Körper
Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. | 7 LP | Betsch |
| T-MATH-103325 | Analysis und Lineare Algebra - Klausur
Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. | 9 LP | Grimm, Hochbruck, Neher |

Modellierte Fristen

Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen

Keine

Anmerkungen

Die Frist zum Ablegen der Orientierungsprüfung wird für Studienanfängerinnen bzw. -anfänger vom WS 18/19 und Studienanfängerinnen bzw. -anfänger vom WS 19/20 um jeweils zwei Semester verlängert, sofern sie in beiden Semestern im gleichen Studiengang eingeschrieben waren.

2.70 Modul: Orientierungsprüfung Berufspädagogik [M-GEISTSOZ-104484]

Einrichtung:
Kit-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von:
Orientierungsprüfung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Leistungspunkte: 0
Notenskala: best./nicht best.
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspkt.</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-100990</td>
<td>4 LP</td>
<td>Berufspädagogik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Einführung in die Berufspädagogik
Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.

Modellierte Fristen
Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen
Keine

Anmerkungen
Für Studierende, die im Sommersemester 2020, im Wintersemester 2020/2021, im Sommersemester 2021 oder im Wintersemester 2021/2022 in einem Studiengang eingeschrieben sind oder waren, verlängert sich die Frist zum Ablegen der Orientierungsprüfung um jeweils ein Semester (§ 32 Abs. 5 a Satz 1 LHG).

Dies bedeutet, dass sich die Frist für

- Studierende, welche in einem der genannten Semester im gleichen Studiengang eingeschrieben sind, um ein Semester verlängert;
- Studierende, welche in zwei der genannten Semester im gleichen Studiengang eingeschrieben sind, um zwei Semester verlängert;
- Studierende, welche in drei oder mehr der genannten Semester im gleichen Studiengang eingeschrieben sind, um maximal drei Semester verlängert.
2.71 Modul: Orientierungsprüfung Elektrotechnik [M-GEISTSOZ-102340]

Einrichtung: KiT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-103353</th>
<th>Höhere Mathematik I - Klausur</th>
<th>11 LP</th>
<th>Anapolitanos, Hundertmark, Kunstmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modellierte Fristen
Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen
Keine

Anmerkungen
2.72 Modul: Orientierungsprüfung Metalltechnik [M-GEISTSOZ-105474]

Einrichtung: KiT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Notenberechnung</th>
</tr>
</thead>
</table>
| T-MATH-100275 | Höhere Mathematik I
Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. | 7 LP | Arens, Griesmaier, Hettlich |
| T-MACH-100282 | Technische Mechanik I
Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein. | 7 LP | Böhlke, Langhoff |

Modellierte Fristen
Dieses Modul muss bis zum Ende des 3. Semesters bestanden werden.

Voraussetzungen
Keine

Anmerkungen
2.73 Modul: Planung beruflicher Bildung (BPäd-PlanBB) [M-GEISTSOZ-100659]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Berufspädagogik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Zehntelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>ID</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrgebiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-101134</td>
<td>Von der Arbeitsanalyse zur Planung beruflicher Bildung</td>
<td>2</td>
<td>Berufspädagogik</td>
</tr>
<tr>
<td>T-GEISTSOZ-106088</td>
<td>Modulprüfung Planung beruflicher Bildung</td>
<td>4</td>
<td>Berufspädagogik</td>
</tr>
<tr>
<td>T-GEISTSOZ-101141</td>
<td>Ansätze der gewerblich-technischen Lehrerbildung</td>
<td>2</td>
<td>Berufspädagogik</td>
</tr>
</tbody>
</table>

Qualitätsmanagement und -entwicklung (Wahl: 1 Bestandteil sowie 2 LP)

<table>
<thead>
<tr>
<th>ID</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Lehrgebiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-101137</td>
<td>Qualität von Lehrveranstaltungen entwickeln</td>
<td>2</td>
<td>Döbber</td>
</tr>
<tr>
<td>T-GEISTSOZ-101140</td>
<td>Qualität der beruflichen Bildung</td>
<td>2</td>
<td>Döbber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulprüfung besteht in einer Hausarbeit im Umfang von insgesamt ca. 15-20 Seiten (4 LP). Sie bezieht sich auf einen oder mehrere der u. g. Themenbereiche (1., 2a., 2b. und/oder 3.).
Zum Bestehen des Moduls sind außerdem die folgenden Studienleistungen nachzuweisen:
1. Studienleistung zum Seminar „Arbeitsanalyse und Planung beruflicher Bildung“ (2 LP)
2a. Studienleistung zum Seminar „Qualität der beruflichen Bildung“ (2 LP) oder
2b. Studienleistung zum Seminar „Qualität von Lehrveranstaltungen entwickeln“ (2 LP)
3. Studienleistung zum Seminar „Ansätze der gewerblich-technischen Lehrerbildung“ (2 LP)

Die Erfolgskontrolle besteht jeweils in der erfolgreichen Teilnahme am Seminar, d. h. im Bestehen der Studienleistungen, die in der Veranstaltung in Form von Hausaufgaben oder Referat zu erbringen sind.
In den Seminaren ist aktive Mitarbeit erforderlich.

Voraussetzungen
keine
Qualifikationsziele
Fachliche Kompetenzen:
Die Studierenden können
- Grundprobleme didaktischen Handelns - von der Erfahrung über das Wissen bis zum Können – erkennen und interpretieren, um auf dieser Basis berufliche Arbeitsaufgaben zu analysieren und Lernfelder zu ent-wickeln;
- im Rahmen von projektorientierter Arbeitsweise Analyseleitfäden entwickeln, Arbeitsanalysen durchführen, Lernbereiche und Lernfelder formulieren und präsentieren, geeignete Lehr-Lern-Methoden konzipieren und Lehr-Lern-Arrangements entwickeln;
- ausgehend von den veränderten Anforderungen an das berufliche Schul- und Weiterbildungssystem die Strukturen und Prozesse zeitgemäßer Qualitätsentwicklungen nachvollziehen, analysieren und erläutern sowie auf Qualitätsmanagementsysteme in beruflichen Bildungseinrichtungen übertragen;
- die Kernelemente aktueller Qualitätsentwicklungsprozesse erläutern, die veränderten Anforderungen und Kompetenzen an das Lehrpersonal und die Bildungseinrichtung interpretieren sowie auf die Entwicklung von Lehr-Lern-Arrangements anwenden;
- anhand konkreter Aufgabenstellungen eigene wissenschaftsadäquate Vorgehensweisen in relevanten Anwendungsgebieten der allgemeinen Technikdidaktik entwickeln und exemplarisch anwenden;
- beispielhaft bzw. systematisch (und auf Grundlage eines entwickelten professionsbezogenen Selbstkonzepts) Konzepte und Lösungen für die Gestaltung von Lehr-Lern-Arrangements nutzen, mittels derer technische Kenntnisse und Fertigkeiten zu erwerben sind;
- mit einem Spektrum der Technikdidaktik umgehen, welches sich von der konkreten Einzelfrage (z.B. Wie lässt sich die Qualifikation zur Bedienung einer Maschine vermitteln?) bis zur übergeordneten Anforderung (etwa der professionellen Koordination einer umfassenderen technischen Ausbildung) erstreckt.

Überfachliche Kompetenzen:
Die Studierenden können
- Qualitätsmanagementkonzepte nachvollziehen, auslegen und für das konkrete Handeln als Berufspädagogen übertragen;
- Arbeitstätigkeiten untersuchen, um sie für die wissenschaftliche Konzeption vorzubereiten und zu strukturieren;
- ihre akademische Bildung in Projektarbeit anwenden
- wissenschaftliche Präsentationen durchführen
- aufgrund von ausgewählten theoretischen Texten mit praktischen Situationen in wissenschaftlich geeigneter Weise umgehen;
- die Unterschiedlichkeit und Wechselwirkung von Theorie und Praxis erkennen und aus wissenschaftlicher Perspektive produktiv anwenden.

Inhalt

In den Seminaren zur Qualität der Berufsbildung (WiSe) und zur Entwicklung der Qualität von Lehrveranstaltungen (SoSe) geht es um die Veränderungen in Wirtschaft und Gesellschaft und die diesbezüglichen Konsequenzen für Berufsbildungseinrichtungen, die Ausrichtung von Bildungseinrichtungen als „Lernende Organisationen“, die Förderung der Eigenständigkeit bzw. Autonomie von beruflichen Schulen, um Qualitätsmanagementsysteme und ihre Umsetzbarkeit in Berufsbildungseinrichtungen (Schulen und Weiterbildungseinrichtungen), die Gestaltung von Qualitätsentwicklungsprozessen (vom Leitbild bis zur Fremdevaluation/Auditerung), die Entwicklung der Unterrichtsqualität, das veränderte Rollen- und Aufgabenverständnis von Lehrenden, die neuen Anforderungen an die Führung sowie um die Evaluation und das Bildungscontrolling.

Im Seminar Allgemeine Technikdidaktik (SoSe und WiSe) geht es um die instruktive Vermittlung technischer Kompetenz, die aktive Aneignung technischer Kompetenz im organisierten Lernprozess, die Unterstützung der autodidaktischen Erschließung technischer Kompetenz, die Gestaltung einzelner Lernsituationen, das mikrodidaktische Instrumentarium der Technikdidaktik, die technikdidaktische Erschließung und Erweiterung des Verständnisses technischer Systeme, die Heranführung problematischer Lernende an technische Kompetenz, den Einsatz von Medien für technikdidaktische Zwecke, um technikdidaktische Zielstellungen der Berufsausbildung und deren Umsetzung im Gesamtverlauf sowie die technikdidaktische Bewertung von Lehr-Lern-Arrangements und die Prüfung der Wirksamkeit. Zudem werden aktuelle wissenschaftliche Konzepte und Fragestellungen der Technikdidaktik behandelt.

Arbeitsaufwand
Präsenzstudienzeiten
Anwesenheit 90 h
Selbststudienzeiten
Vor- und Nachbereitung 90 h
Prüfung(en) / Erfolgskontrolle(n) 120 h
Summe 300 h
Module: Planungsmethodik (bauiBGP11-PLANM) [M-BGU-103743]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 2
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 1
Version 1

Pflichtbestandteile

| T-BGU-107450 | Planungsmethodik | 2 LP | Vortisch |

Erfolgskontrolle(n)
- Teilleistung T-BGU-107450 mit unbenoteter Studienleistung nach § 4 Abs. 3

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Planungstypologie
- Funktionen und Systeme gesellschaftlicher Planung
- Handlungssequenzen und ihre Koordination
- Ressourcenökonomie in der Planung
- Prognosenotwendigkeit
- Unsicherheit in der Planung
- einfache Prognoseverfahren
- Abgrenzung von Maßnahmen
- Maßnahmenbewertung
- Mit/Ohne-Fall-Prinzip
- Sensitivitätsanalysen (Vorgehen und Anwendungsfälle)

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen/Übungen: 15 Std.
- Testvorbereitung: 15 Std.

Summe: 15 Std.

Empfehlungen
keine

Literatur
Skriptum Fürst, D.; Scholles, F. (Hrsg.) 2008: Handbuch Theorien und Methoden der Raum- und Umweltplanung; Detmold: Dorothea Rohn
2.75 Modul: Praxis des beruflichen Lehrens und Lernens (BPäd-PraxisLL) [M-GEISTSOZ-100672]

Verantwortung: Vertretung der Professur für Berufspädagogik

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: Berufspädagogik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehnteilnoten</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 20.03.2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>hierbei</td>
</tr>
<tr>
<td>Verhalten</td>
</tr>
<tr>
<td>Berufsbildungspersonal</td>
</tr>
<tr>
<td>austausch</td>
</tr>
<tr>
<td>Im</td>
</tr>
<tr>
<td>Analyse</td>
</tr>
<tr>
<td>Berufsbildungseinrichtungen</td>
</tr>
<tr>
<td>Im</td>
</tr>
<tr>
<td>Lehrens</td>
</tr>
<tr>
<td>Die</td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td>Die Studierenden erhalten in diesem Modul einen vertieften Zugang zu wesentlichen Aspekten der Praxis des beruflichen Lehrens und Lernens.</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Das Modul schließt mit einer schriftlichen Prüfungsleistung anderer Art in Form eines Portfolios ab (2 LP). Im Rahmen des Portfolios erfolgt eine Dokumentation des Berufspädagogischen Praktikums bzw. Schulpraktikums. Außerdem ist hier eine Reflexion des Praktikums und der eigenen Erfahrungen vorgesehen, wobei das Augenmerk insbesondere auf der Auseinandersetzung mit den Anforderungen an Berufsbildungspersonal liegt.

Zum Bestehen des Moduls sind außerdem Studienleistungen in Form kürzerer schriftlicher Texte im Rahmen der beiden Lehrveranstaltungen zu erbringen (jeweils 1 LP), die ebenfalls Teil des Portfolios sind.

Voraussetzungen

keine

Qualifikationsziele

Fachliche Kompetenzen:

Die Studierenden können
- die wesentlichen Anforderungen an Lehrkräfte im berufsbildenden Bereich sowie deren Aufgaben benennen und erläutern;
- heterogene Lernvoraussetzungen bei Schülerinnen und Schülern bzw. Auszubildenden erkennen und sie bei der Planung und Analyse von Lehr-Lern-Arrangements anhand des Berliner Modells berücksichtigen;
- fachgerechte Hospitationen durchführen, die Struktur von Lehr-Lern-Arrangements aufdecken und Lehr-Lern-Arrangements (z.B. Unterricht) pädagogisch analysieren;
- eigenständig oder im Team spezifische Sequenzen eines Lehr-Lern-Arrangements planen und durchführen
- heterogene Anforderungen an Berufsbildungspersonal beschreiben und sich in diesem Spannungsfeld selbst positionieren (d.h. eigene Schwerpunkte setzen).

Überfachliche Kompetenzen:

Die Studierenden können
- schulische Spannungsfelder nennen und beschreiben;
- Vorträge gemeinsam mit Mitstudierenden sowie alleine gestalten undzielgruppenadäquat einsetzen;
- ihre Vorgehensweise alleine sowie im Team reflektieren und ggfs. externenBeteiligten sachgerecht erläutern;
- berufstypische Dokumentationen erstellen.

Inhalt

Zusammensetzung der Modulnote
Die Note ergibt sich aus der Note des Portfolios.

Anmerkungen
Das Modul beginnt immer im Wintersemester.

Arbeitsaufwand
Präsenzstudienzeiten
Anwesenheit 30 h
Selbststudienzeiten
Vor- und Nachbereitung 30 h
Prüfung(en) / Erfolgskontrolle(n) 60 h
Summe 120 h

Empfehlungen
erfolgreicher Abschluss der Module "Berufspädagogische Grundlagen" und "Organisation und Handlungsfelder der beruflichen Bildung"

Literatur
Informatien über heterogene Anforderungen an Lehrkräfte und einen gewinnbringenden Umgang damit:

Informationen zum Nutzen des Portfolio-Konzepts:

2.76 Modul: Produktion, Logistik und Wirtschaftsinformatik [M-WIWI-105770]

Verantwortung:
Prof. Dr. Wolf Fichtner
Prof. Dr. Andreas Geyer-Schulz
Prof. Dr. Alexander Mädche
Prof. Dr. Stefan Nickel
Prof. Dr. Frank Schultmann
Prof. Dr. Christof Weinhardt

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre

Leistungspunkte
5

Notenskala
Zehntelnoten

Turnus
Jedes Wintersemester

Dauer
1 Semester

Sprache
Deutsch

Level
3

Version
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-111602</td>
<td>Produktion, Logistik und Wirtschaftsinformatik</td>
<td>5 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele
Der/die Studierende

- besitzt grundlegende Kenntnisse des Zusammenspiels von Informationstechnologien, Menschen und Organisationsstrukturen,
- ist vertraut mit den Strukturen von Informationssystemen,
- beherrscht die wesentlichen Konzepte, Theorien und Methoden der Produktionswirtschaft,
- hat ein Verständnis für Probleme, Zusammenhänge und Lösungen der Logistikprozesse von Unternehmen.

Mit dem in den drei Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Inhalt
Es werden die Grundlagen der Wirtschaftsinformatik vermittelt. Zudem wird in den Bereich Produktionswirtschaft und Logistik eingeführt.

Arbeitsaufwand
Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
2.77 Modul: Projektmanagement (bauiBGP12-PMANG) [M-BGU-101755]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Leistungspunkte 2
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile
T-BGU-107449 Projektmanagement (unbenotet) 2 LP Haghsheno

Erfolgskontrolle(n)
- Teilleistung T-BGU-107449 mit unbenoteter Studienleistung nach § 4 Abs. 3

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden können die Grundlagen des Projektmanagements insbesondere für den Bereich des Bauwesens erläutern.

Inhalt
In diesem Modul wird eine Einführung in das Wesen des Projektmanagements gegeben. Projektphasen, Projektorganisation und die wesentlichen Säulen des Projektmanagements nämlich Terminmanagement, Kostenmanagement und Qualitätsmanagement werden dabei vermittelt. Zudem wird auf die speziellen Gegebenheiten bei Bauprojekten eingegangen.

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung/Übung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen/Übungen: 10 Std.
- Testvorbereitung: 20 Std.

Summe: 60 Std.

Empfehlungen
keine

Literatur
DIETHELM, G.: Projektmanagement, Band 1: Grundlagen, Verlag Neue Wirtschafts-Briefe, Herne, 2000
Modul: Proseminar Mathematik (IN3MATHPS) [M-MATH-101313]

Verantwortung: PD Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Prüfungseinheit</th>
<th>3 LP Kühnlein</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103404</td>
<td>Proseminar Mathematik</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt als Erfolgskontrolle anderer Art nach § 4 Abs. 2 Nr. 3 SPO.

Die Modulnote entspricht der Bewertung dieser Erfolgskontrolle.

In der Regel ist die Voraussetzung für das Bestehen des Moduls eine mündliche Präsentation von mindestens 45 Minuten.

Voraussetzungen

keine

Qualifikationsziele

- Die Studierenden erhalten eine erste Einführung in das wissenschaftliche Arbeiten auf einem speziellen Fachgebiet.
- Die Bearbeitung der Proseminar-/Seminararbeit bereitet zudem auf die Abfassung der Bachelorarbeit vor.
- Mit dem Besuch der Proseminar-/Seminarveranstaltungen werden neben Techniken des wissenschaftlichen Arbeitens auch Schlüsselqualifikationen integrativ vermittelt.

Inhalt

Das Modul behandelt in den angebotenen Proseminaren/Seminaren spezifische Themen, die teilweise in entsprechenden Vorlesungen angesprochen wurden und vertieft diese.
2.79 Modul: Regelung elektrischer Antriebe [M-ETIT-100395]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte: 6
Notenskala: Zehntelnoten
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-ETIT-100712 Regelung elektrischer Antriebe 6 LP Becker

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Voraussetzungen
keine

Qualifikationsziele

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Arbeitsaufwand
21x V + 7x Ü à 1,5 h = 42 h
21x Nachbereitung von V à 1 h = 21 h
6x Vorbereitung von Ü à 2 h = 12 h
Vorbereitung zur Prüfung= 80 h
Somme= 155 h (entspricht 6 LP)
2.80 Modul: Schulpraktikum [M-GEISTSOZ-104761]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Universität gesamt
Bestandteil von: Berufspädagogisches Praktikum bzw. Schulpraktikum

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-GEISTSOZ-109721 | Schulpraktikum (4 Wochen) | 5 LP |

Erfolgskontrolle(n)

Voraussetzungen

keine

Qualifikationsziele

Fachliche Kompetenzen:

Die Studierenden können
- die wesentlichen Anforderungen an Lehrkräfte im berufsbildenden Bereich sowie deren Aufgaben benennen und erläutern;
- heterogene Lernvoraussetzungen bei Schülerinnen und Schülern bzw. Auszubildenden erkennen und sie bei der Planung und Analyse von Lehr-Lern-Arrangements anhand des Berliner Modells berücksichtigen;
- fachgerechte Hospitationen durchführen, die Struktur von Lehr-Lern-Arrangements aufdecken und Lehr-Lern-Arrangements (z.B. Unterricht) pädagogisch analysieren;
- eigenständig spezifische Sequenzen eines Lehr-Lern-Arrangements planen und diese unter Anleitung durchführen
- heterogene Anforderungen an Berufsbildungspersonal beschreiben.

Überfachliche Kompetenzen:

Die Studierenden können
- schulische Spannungsfelder nennen und beschreiben
- sich eigeninitiativ in organisationale Rahmenbedingungen und/oder spezifische Aufgabengebiete einarbeiten

Inhalt

Im Schulpraktikum erhalten die Studierenden Einblicke in die Organisation berufsbildender Schulen, hospitieren berufsbildenden Unterricht und führen erste eigene Unterrichtssequenzen oder -stunden unter Anleitung durch. Sie erhalten Einblick in die Anforderungen und Tätigkeiten der Lehrkräfte und erkunden eigeninitiativ spezifische Aufgabengebiete.

Zusammensetzung der Modulnote

Das Modul ist unbenotet.

Empfehlungen

Erfolgreicher Abschluss der Module "Berufspädagogische Grundlagen" und "Organisation und Handlungsfelder der beruflichen Bildung"

2.81 Modul: Schwerpunkt: Automatisierungstechnik (SP 04) [M-MACH-102601]

Verantwortung: apl. Prof. Dr. Ralf Mikut
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme (ENAT)"
Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "System- und Informationstechnik (SIT)"

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlinformationen
Im Kernbereich des Schwerpunktes sind mindestens 8 LP zu wählen.

Automatisierungstechnik (K) (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Autoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>4</td>
<td>Mikut, Reinartz, Reischl</td>
</tr>
<tr>
<td>T-MACH-105694</td>
<td>Datenaanalyse für Ingenieure</td>
<td>5</td>
<td>Meisenbacher, Mikut, Reischl</td>
</tr>
<tr>
<td>T-MACH-105317</td>
<td>Digitale Regelungen</td>
<td>4</td>
<td>Knoop</td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>6</td>
<td>Böhland, Reischl</td>
</tr>
<tr>
<td>T-MACH-105539</td>
<td>Moderne Regelungskonzepte I</td>
<td>4</td>
<td>Groell</td>
</tr>
</tbody>
</table>

Automatisierungstechnik (E) (Wahl: max. 8 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>LP</th>
<th>Autoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105156</td>
<td>Fahrzeugmechatronik I</td>
<td>4</td>
<td>Ammon</td>
</tr>
<tr>
<td>T-MACH-105223</td>
<td>Machine Vision</td>
<td>8</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105335</td>
<td>Messtechnik II</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-106691</td>
<td>Moderne Regelungskonzepte II</td>
<td>4</td>
<td>Groell</td>
</tr>
<tr>
<td>T-MACH-106692</td>
<td>Moderne Regelungskonzepte III</td>
<td>4</td>
<td>Groell</td>
</tr>
<tr>
<td>T-MACH-111249</td>
<td>Optische Messsysteme</td>
<td>4</td>
<td>Sieber</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4</td>
<td>Hähnner</td>
</tr>
<tr>
<td>T-MACH-105341</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td>4</td>
<td>Stiller</td>
</tr>
<tr>
<td>T-MACH-105990</td>
<td>Simulation optischer Systeme</td>
<td>4</td>
<td>Sieber</td>
</tr>
<tr>
<td>T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>4</td>
<td>Gönnheimer</td>
</tr>
<tr>
<td>T-MACH-105555</td>
<td>Systemintegration in der Mikro- und Nanotechnik</td>
<td>4</td>
<td>Gengenbach</td>
</tr>
<tr>
<td>T-MACH-110272</td>
<td>Systemintegration in der Mikro- und Nanotechnik 2</td>
<td>4</td>
<td>Gengenbach</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>6</td>
<td>Naumann, Werling</td>
</tr>
<tr>
<td>T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>4</td>
<td>Seemann</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-102149</td>
<td>Virtual Reality Praktikum</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
"Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt. Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Keine
Qualifikationsziele
Der Schwerpunkt Automatisierungstechnik bietet eine fundierte Ausbildung der Studierenden in theoretischen und praxisrelevanten Grundlagen des methodenorientierten Fachgebiets und befähigt sie zur Anwendung, Auswahl und Weiterentwicklung geeigneter Methoden. Die Hauptaugenmerke liegen auf folgenden Bereichen:

- Regelungstechnik in der Praxis
- Automation
- exemplarische Anwendungen

Studierende des Schwerpunkts kennen die zukunftsfördernden Methoden der Automatisierungstechnik und deren Grundlagen. Sie haben die Fähigkeit zur individuellen, kreativen Lösung komplexer Probleme unabhängig vom spezifischen Einsatzfeld.

Inhalt
S. Teilleistungen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
Vorlesung, Übung
Schwerpunkt: Grundlagen der Energietechnik (SP 15) [M-MACH-102623]

Verantwortung:
Prof. Dr.-Ing. Hans-Jörg Bauer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Erster</th>
<th>Letzter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105220</td>
<td>Grundlagen der Energietechnik</td>
<td>8</td>
<td>Badea, Cheng</td>
<td></td>
</tr>
</tbody>
</table>

Grundlagen der Energietechnik (K) (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Erster</th>
<th>Letzter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105525</td>
<td>Einführung in die Kernenergie</td>
<td>4</td>
<td>Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105325</td>
<td>Grundlagen der technischen Verbrennung II</td>
<td>4</td>
<td>Bykov, Maas</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105326</td>
<td>Hydraulische Strömungsmaschinen</td>
<td>8</td>
<td>Pritz</td>
<td></td>
</tr>
</tbody>
</table>

Grundlagen der Energietechnik (E) (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Erster</th>
<th>Letzter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105462</td>
<td>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</td>
<td>4</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111398</td>
<td>Auslegung von Brennstoffzellensystemen</td>
<td>4</td>
<td>Haußmann</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111623</td>
<td>Betriebsstoffe für motorische Antriebe</td>
<td>4</td>
<td>Kehrwald, Kubach</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111550</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111193</td>
<td>Data Driven Engineering 1: Machine Learning for Dynamical Systems</td>
<td>4</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111373</td>
<td>Data Driven Engineering 2: Advanced Topics</td>
<td>4</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>4</td>
<td>Kramer, Schönung</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105408</td>
<td>Energiesysteme I - Regenerative Energien</td>
<td>4</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105533</td>
<td>Gasdynamik</td>
<td>4</td>
<td>Gatti, Kriegseis</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105167</td>
<td>Methoden zur Analyse der motorischen Verbrennung</td>
<td>4</td>
<td>Pfeil</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105557</td>
<td>Microenergy Technologies</td>
<td>4</td>
<td>Kohl</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105339</td>
<td>Numerische Simulation reagierender Zweiphasenströmungen</td>
<td>4</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105338</td>
<td>Numerische Strömungsmechanik</td>
<td>4</td>
<td>Gatti, Magagnato</td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101939</td>
<td>Photovoltaik</td>
<td>6</td>
<td>Powalla</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105537</td>
<td>Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung</td>
<td>4</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4</td>
<td>Fleischer, Ruhland</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>4</td>
<td>Dagan</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403</td>
<td>Strömungen und Wärmeübertragung in der Energietechnik</td>
<td>4</td>
<td>Cheng</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-111382</td>
<td>Technische Akustik</td>
<td>4</td>
<td>Pantle, Walter</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>4</td>
<td>Steiglitz</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105363</td>
<td>Thermische Turbomaschinen I</td>
<td>6</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105234</td>
<td>Windkraft</td>
<td>4</td>
<td>Lewald</td>
<td></td>
</tr>
</tbody>
</table>

Grundlagen der Energietechnik (P) (Wahl: max. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>LP</th>
<th>Erster</th>
<th>Letzter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105313</td>
<td>CFD-Praktikum mit OpenFOAM</td>
<td>4</td>
<td>Koch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105515</td>
<td>Einführung in die numerische Strömungstechnik</td>
<td>4</td>
<td>Pritz</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105331</td>
<td>Lehrlabor: Energietechnik</td>
<td>4</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt. Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Keine

Qualifikationsziele
Nach Abschluss des Schwerpunkts sind die Studierenden in der Lage:

- die Elemente eines Energiesystems und ihr komplexes Zusammenwirken zu beschreiben,
- unterschiedliche konventionelle Primärenergiequellen zu benennen und ihre statische Reichweite zu beurteilen,
- das zeitlich fluktuierende Angebot erneuerbarer Energien wie Wind, solare Strahlung, Meeresströmungen und Gezeiten etc. zu benennen und seine Auswirkungen auf das Energiesystem zu beschreiben,
- Auswirkungen von externen und internen wirtschaftlichen, ökologischen und technischen Randbedingungen auf Energiesysteme zu beurteilen und Ansätze für eine optimale Zusammensetzung unterschiedlicher Technologien zu erarbeiten,
- die grundlegenden Funktionsweisen etablierter Kraftwerke und auf erneuerbaren Energien basierenden zentralen und dezentralen Kraftwerken zu erklären.

Inhalt
S. Teilleistungen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Übungen.
<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105220 Grundlagen der Energietechnik</td>
<td>8 LP</td>
<td>Badea, Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Energietechnik (K) (Wahl:)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105525 Einführung in die Kernenergie</td>
<td>4 LP</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105325 Grundlagen der technischen Verbrennung II</td>
<td>4 LP</td>
<td>Bykov, Maas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105326 Hydraulische Strömungsmaschinen</td>
<td>8 LP</td>
<td>Pritz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Energietechnik (E) (Wahl:)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105462 Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</td>
<td>4 LP</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151 Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>4 LP</td>
<td>Kramer, Schöning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105408 Energiesysteme I - Regenerative Energien</td>
<td>4 LP</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105533 Gasdynamik</td>
<td>4 LP</td>
<td>Gatti, Kriegseis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105557 Microenergy Technologies</td>
<td>4 LP</td>
<td>Kohl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105338 Numerische Strömungsmechanik</td>
<td>4 LP</td>
<td>Gatti, Magagnato</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-101939 Photovoltaik</td>
<td>6 LP</td>
<td>Powalla</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105537 Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nucleare Entsorgung</td>
<td>4 LP</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110984 Produktionstechnik für die Elektromobilität</td>
<td>4 LP</td>
<td>Fleischer, Ruhland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106493 Solar Thermal Energy Systems</td>
<td>4 LP</td>
<td>Dagan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105403 Strömungen und Wärmeübertragung in der Energietechnik</td>
<td>4 LP</td>
<td>Cheng</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111382 Technische Akustik</td>
<td>4 LP</td>
<td>Pantle, Walter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105652 Technische Grundlagen des Verbrennungsmotors</td>
<td>5 LP</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105225 Thermische Solarenergie</td>
<td>4 LP</td>
<td>Steiglitz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105234 Windkraft</td>
<td>4 LP</td>
<td>Lewald</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Energietechnik (P) (Wahl: max. 4 LP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105331 Lehrlabor: Energietechnik</td>
<td>4 LP</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-106707 Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>4 LP</td>
<td>Bauer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung

Voraussetzungen
Keine
Qualifikationsziele
Nach Abschluss des Schwerpunkts sind die Studierenden in der Lage:

- die Elemente eines Energiesystems und ihr komplexes Zusammenwirken zu beschreiben,
- unterschiedliche konventionelle Primärenergiequellen zu benennen und ihre statische Reichweite zu beurteilen,
- das zeitlich fluktuierende Angebot erneuerbarer Energien wie Wind, solare Strahlung, Meeresströmungen und Gezeiten etc. zu benennen und seine Auswirkungen auf das Energiesystem zu beschreiben,
- Auswirkungen von externen und internen wirtschaftlichen, ökologischen und technischen Randbedingungen auf Energiesysteme zu beurteilen und Ansätze für eine optimale Zusammensetzung unterschiedlicher Technologien zu erarbeiten,
- die grundlegenden Funktionsweisen etablierter Kraftwerke und auf erneuerbaren Energien basierenden zentralen und dezentralen Kraftwerken zu erklären.

Inhalt

Arbeitsaufwand
360 Stunden

Lehr- und Lernformen
Vorlesung, Übungen
2.84 Modul: Schwerpunkt: Kraftfahrzeugtechnik (SP 12) [M-MACH-102818]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"

Leistungspunkte, Notenskala, Turnus, Dauer, Sprache, Level, Version

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>8</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Antriebe für Automobile</td>
<td>4</td>
<td>Noreikat</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Antriebssystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>4</td>
<td>Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-111550</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-111560</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II</td>
<td>5</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>5</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Entwicklung des hybriden Antriebsstranges</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>4</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>4</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-108374</td>
<td>Fahrzeugergonomie</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>4</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>4</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Fahrzeuggleichbau - Strategien, Konzepte, Werkstoffe</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>4</td>
<td>Leister</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Fahrzeugsehen</td>
<td>6</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Grundlagen der Fahrzeugtechnik II</td>
<td>4</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>4</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>2</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II</td>
<td>2</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Grundsätze der Nutzfahrzeugentwicklung</td>
<td>4</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>2</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>2</td>
<td>Frech</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105375</td>
<td>Industrieaerodynamik</td>
<td>4</td>
<td>Frohnapfel, Kröber</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Lasereinsatz im Automobilbau</td>
<td>4</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4</td>
<td>Kärger, Liebig</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Motorenesstehn</td>
<td>4</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>4</td>
<td>Koch, Toedter</td>
</tr>
</tbody>
</table>

Ingenieurrpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
<th>LP</th>
<th>Autoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4</td>
<td>Fleischer, Ruhland</td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>4</td>
<td>Kienzle, Steegmüller</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>6</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-110796</td>
<td>Python Algorithmus für Fahrzeugtechnik</td>
<td>4</td>
<td>Rhode</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>4</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>4</td>
<td>Proppe</td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study</td>
<td>1</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4</td>
<td>Koch, Kubach</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>6</td>
<td>Naumann, Werling</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahnntechnik</td>
<td>4</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-111585</td>
<td>Wasserstoff und reFuels – motorische Energieumwandlung</td>
<td>4</td>
<td>Klaiber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Gültig für alle eigenen Studiengänge, für die im Folgenden kein Wert hinterlegt wurde.

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Voraussetzungen
Keine

Qualifikationsziele

Der/ die Studierende

- kennt die wichtigsten Baugruppen eines Fahrzeugs,
- kennt und versteht die Funktionsweise und das Zusammenspiel der einzelnen Komponenten,
- kennt die Grundlagen zur Dimensionierung der Bauteile,
- kennt und versteht die Vorgehensweisen bei der Entwicklung eines Fahrzeugs,
- kennt und versteht die technischen Besonderheiten, die beim Entwicklungsprozess eine Rolle spielen,
- ist sich der Randbedingungen, die z.B. aufgrund der Gesetzgebung zu beachten sind, bewusst,
- ist in der Lage, Fahrzeugkonzepte zu analysieren, zu beurteilen und bei der Entwicklung von Fahrzeugen kompetent mitzuwirken.

Inhalt

Im Modul Kraftfahrzeugtechnik werden die Grundlagen vermittelt, die für die Entwicklung, die Auslegung, die Produktion und den Betrieb von Kraftfahrzeugen bedeutend sind. Insbesondere werden die primär wichtigen Aggregate wie Motor, Getriebe, Antriebsstrang, Fahrwerk und Hilfsaggregate behandelt, aber ebenso alle technischen Einrichtungen, die den Betrieb sicherer und einfacher machen, bis hin zur Innenausstattung, die dem Nutzer eine möglichst angenehme, arbeitsoptimale Umgebung bieten soll.

Im Modul Kraftfahrzeugtechnik liegt der Fokus auf den Personenkraftwagen und Nutzfahrzeugen, die für den Straßeneinsatz bestimmt sind.

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.
Lehr- und Lernformen
Die Lehr- und Lernform (Vorlesung, Praktikum oder Workshop) wird bei jeder Lehrveranstaltung dieses Moduls beschrieben.
2.85 Modul: Schwerpunkt: Kraftfahrzeugtechnik (SP 12) [M-MACH-102607]

Verantwortung:
Prof. Dr. Frank Gauterin

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"

Leistungspunkte: 16
Notenskala: Zehntelnoten
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch/Englisch
Level: 3
Version: 7

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel</th>
<th>LP</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td>8</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105655</td>
<td>Alternative Antriebe für Automobile</td>
<td>4</td>
<td>Noreikat</td>
</tr>
<tr>
<td>T-MACH-105233</td>
<td>Antriebsystemtechnik A: Fahrzeugantriebstechnik</td>
<td>4</td>
<td>Albers, Matthiesen, Ott</td>
</tr>
<tr>
<td>T-MACH-110958</td>
<td>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</td>
<td>4</td>
<td>Albers, Faust</td>
</tr>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-111550</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-111560</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II</td>
<td>5</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-108719</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td>4</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-108721</td>
<td>Dimensionierung mit Verbundwerkstoffen</td>
<td>4</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-105226</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>5</td>
<td>Fidlin</td>
</tr>
<tr>
<td>T-MACH-110817</td>
<td>Entwicklung des hybriden Antriebsstranges</td>
<td>4</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105152</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>4</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>4</td>
<td>Unrau</td>
</tr>
<tr>
<td>T-MACH-105154</td>
<td>Fahrzeugkomfort und -akustik I</td>
<td>4</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>4</td>
<td>Gauterin</td>
</tr>
<tr>
<td>T-MACH-105237</td>
<td>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102207</td>
<td>Fahrzeugreifen- und Räderentwicklung für PKW</td>
<td>4</td>
<td>Leister</td>
</tr>
<tr>
<td>T-MACH-105218</td>
<td>Fahrzeugehen</td>
<td>6</td>
<td>Lauer, Stiller</td>
</tr>
<tr>
<td>T-MACH-105535</td>
<td>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</td>
<td>4</td>
<td>Henning</td>
</tr>
<tr>
<td>T-MACH-102117</td>
<td>Grundlagen der Fahrzeugtechnik II</td>
<td>4</td>
<td>Gauterin, Unrau</td>
</tr>
<tr>
<td>T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>4</td>
<td>Deutschmann, Grunwaldt, Kubach, Lox</td>
</tr>
<tr>
<td>T-MACH-102116</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>2</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-102119</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II</td>
<td>2</td>
<td>Bardehle</td>
</tr>
<tr>
<td>T-MACH-111389</td>
<td>Grundsätze der Nutzfahrzeugentwicklung</td>
<td>4</td>
<td>Weber</td>
</tr>
<tr>
<td>T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>2</td>
<td>Frech</td>
</tr>
<tr>
<td>T-MACH-105163</td>
<td>Grundsätze der PKW-Entwicklung II</td>
<td>2</td>
<td>Frech</td>
</tr>
<tr>
<td>T-ETIT-100784</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>4</td>
<td>Becker</td>
</tr>
<tr>
<td>T-MACH-105375</td>
<td>Industrieaerodynamik</td>
<td>4</td>
<td>Frohnapfel, Kröber</td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4</td>
<td>Schlichtenmayer</td>
</tr>
<tr>
<td>T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>4</td>
<td>Albers, Burkardt</td>
</tr>
<tr>
<td>T-MACH-105164</td>
<td>Lasereinsatz im Automobilbau</td>
<td>4</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4</td>
<td>Kärger, Liebig</td>
</tr>
<tr>
<td>T-MACH-108717</td>
<td>Mechanik laminierter Komposite</td>
<td>4</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-105169</td>
<td>Motorenmesstechnik</td>
<td>4</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>T-MACH-111578</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>4</td>
<td>Koch, Toedter</td>
</tr>
<tr>
<td>Modulcode</td>
<td>Modulname</td>
<td>Leistungspunkte</td>
<td>Dozenten</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>T-MACH-108720</td>
<td>Numerische Mechanik für Industrieanwendungen</td>
<td>4 LP</td>
<td>Schnack</td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Zacharias</td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4 LP</td>
<td>Fleischer, Ruhland</td>
</tr>
<tr>
<td>T-MACH-102155</td>
<td>Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung</td>
<td>4 LP</td>
<td>Mbang</td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>4 LP</td>
<td>Kienzle, Steegmüller</td>
</tr>
<tr>
<td>T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>6 LP</td>
<td>Frey, Gauterin, Gießler</td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>4 LP</td>
<td>Ays, Geerling</td>
</tr>
<tr>
<td>T-MACH-105347</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>4 LP</td>
<td>Albers, Gutzmer, Matthiesen</td>
</tr>
<tr>
<td>T-MACH-110796</td>
<td>Python Algorithmus für Fahrzeugtechnik</td>
<td>4 LP</td>
<td>Rhode</td>
</tr>
<tr>
<td>T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>4 LP</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td>3 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-110396</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study</td>
<td>1 LP</td>
<td>Albers, Matthiesen, Siebe</td>
</tr>
<tr>
<td>T-MACH-105358</td>
<td>Sustainable Product Engineering</td>
<td>4 LP</td>
<td>Albers, Matthiesen, Ziegahn</td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5 LP</td>
<td>Bernhardt, Kubach, Pfeil, Toedter, Wagner</td>
</tr>
<tr>
<td>T-MACH-102194</td>
<td>Verbrennungsmotoren I</td>
<td>4 LP</td>
<td>Koch</td>
</tr>
<tr>
<td>T-MACH-105367</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>6 LP</td>
<td>Naumann, Werling</td>
</tr>
<tr>
<td>T-MACH-102148</td>
<td>Verzahntechnik</td>
<td>4 LP</td>
<td>Klaiber</td>
</tr>
<tr>
<td>T-MACH-111585</td>
<td>Wasserstoff und reFuels – motorische Energieumwandlung</td>
<td>4 LP</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfungen: Dauer ca. 5 Min. je Leistungspunkt. Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen

Keine

Qualifikationsziele

Der/ die Studierende

- kennt die wichtigsten Baugruppen eines Fahrzeugs,
- kennt und versteht die Funktionsweise und das Zusammenspiel der einzelnen Komponenten,
- kennt die Grundlagen zur Dimensionierung der Bauteile,
- kennt und versteht die Vorgehensweisen bei der Entwicklung eines Fahrzeugs,
- kennt und versteht die technischen Besonderheiten, die beim Entwicklungsprozess eine Rolle spielen,
- ist sich der Randbedingungen, die z.B. aufgrund der Gesetzgebung zu beachten sind, bewusst,
- ist in der Lage, Fahrzeugkonzepte zu analysieren, zu beurteilen und bei der Entwicklung von Fahrzeugen kompetent mitzuwirken.

Inhalt

S. Teilleistungen.

Arbeitsaufwand

Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen

Vorlesungen, Übungen
Modul: Schwerpunkt: Produktionssysteme (SP 38) [M-MACH-102589]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Produktionssysteme (K) (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Vorlesungstitel</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>4</td>
<td>Deml</td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8</td>
<td>Schulze, Zanger</td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</td>
<td>8</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102151</td>
<td>Materialfluss in Logistiksystemen</td>
<td>9</td>
<td>Furmans</td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8</td>
<td>Fleischer</td>
</tr>
</tbody>
</table>

Produktionssysteme (E) (Wahl:)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Vorlesungstitel</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8</td>
<td>Fleischer</td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>4</td>
<td>Lanza</td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4</td>
<td>Ovtcharova</td>
</tr>
</tbody>
</table>

Produktionssysteme (P) (Wahl: max. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Vorlesungstitel</th>
<th>LP</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4</td>
<td>Häfner</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>4</td>
<td>Zanger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt
Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden …

- können in vertrauten Situationen productionstechnische Methoden zielgerichtet auswählen und ihre Auswahl begründen.
- sind in der Lage, Produktionsprozesse modellhaft zu beschreiben und zu vergleichen.
- sind in der Lage, bekannte Lösungen auf vorgegebene Probleme im produktionstechnischen Umfeld unter Berücksichtigung wissenschaftlicher Theorien, Prinzipien und Methoden zu transferieren.
- sind befähigt, Aufgabenstellungen im produktionstechnischen Umfeld teamorientiert zu lösen und dabei verantwortungsvoll und situationsangemessen vorzugehen.
- können bei der Lösung vorgegebener Problemstellungen die Ergebnisse anderer integrieren.
- besitzen die Fähigkeit, die eigenen Lösungsergebnisse schriftlich darzulegen und können diese interpretieren.
- können Systeme und Prozesse identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.

Inhalt
Im Rahmen des Moduls werden die Studierenden die Produktionstechnik erlernen und kennenlernen. Durch das vielfältige Vorlesungsangebot und die Vorlesungen im Rahmen einiger Vorlesungen werden tiefe Einblicke in den Bereich der Produktionstechnik geschaffen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 360 Zeitstunden, entsprechend 12 Leistungspunkten.

Lehr- und Lernformen
Vorlesungen, Seminare, Workshops, Exkursionen
2.87 Modul: Schwerpunkt: Produktionstechnik (SP 39) [M-MACH-102618]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"

Wahlinformationen
Im Kernbereich des Schwerpunktes sind mindestens 8 LP zu wählen.

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Leistungsnachweise

Produktionstechnik (K) (Wahl: mind. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Lerninhalte</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-108844</td>
<td>Automatisierte Produktionsanlagen</td>
<td>8 LP Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>8 LP Schulze, Zanger</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110337</td>
<td>Globale Produktion und Logistik</td>
<td>8 LP Furmans, Lanza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108849</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</td>
<td>8 LP Lanza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110962</td>
<td>Werkzeugmaschinen und hochpräzise Fertigungssysteme</td>
<td>8 LP Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Produktionstechnik (E) (Wahl: max. 8 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Lerninhalte</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110176</td>
<td>Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie</td>
<td>4 LP Wawerla</td>
<td></td>
</tr>
<tr>
<td>T-MACH-102159</td>
<td>Elemente und Systeme der Technischen Logistik</td>
<td>4 LP Fischer, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-108946</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>2 LP Fischer, Mittwollen</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (macht und wiwi)</td>
<td>4 LP Kramer, Schöning</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110176</td>
<td>Gießereikunde</td>
<td>4 LP Wilhelm</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110991</td>
<td>Globale Logistik</td>
<td>4 LP Furmans</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>4 LP Mittwollen, Oellerich</td>
<td></td>
</tr>
<tr>
<td>T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>5 LP Hochstein</td>
<td></td>
</tr>
<tr>
<td>T-MACH-106374</td>
<td>Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes</td>
<td>4 LP Stock</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105388</td>
<td>Industrielle Fertigungswirtschaft</td>
<td>4 LP Dürrschnabel</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>4 LP Schlichtenmayer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110334</td>
<td>International Production Engineering A</td>
<td>4 LP Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110335</td>
<td>International Production Engineering B</td>
<td>4 LP Fleischer</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105174</td>
<td>Lager- und Distributionssysteme</td>
<td>3 LP Furmans</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105231</td>
<td>Leadership and Management Development</td>
<td>4 LP Albers, Matthiesen, Ploch</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4 LP Kärger, Liebig</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105783</td>
<td>Lernfabrik Globale Produktion</td>
<td>6 LP Lanza</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105189</td>
<td>Mathematische Modelle und Methoden für Produktionssysteme</td>
<td>6 LP Baumann, Furmans</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105442</td>
<td>Patente und Patentstrategien in innovativen Unternehmen</td>
<td>4 LP Albers, Matthiesen, Zacharias</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105387</td>
<td>Planung von Montagesystemen</td>
<td>4 LP Haller</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>4 LP Kienzie, Steegmüller</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105470</td>
<td>Produktionsplanung und -steuerung</td>
<td>4 LP Rinn</td>
<td></td>
</tr>
<tr>
<td>T-MACH-110984</td>
<td>Produktionstechnik für die Elektromobilität</td>
<td>4 LP Fleischer, Ruhland</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105523</td>
<td>Produktivitätsmanagement in ganzheitlichen Produktionssystemen</td>
<td>4 LP Stowasser</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105457</td>
<td>Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems</td>
<td>5 LP Schulze</td>
<td></td>
</tr>
<tr>
<td>T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebsysteme</td>
<td>4 LP Ays, Geerling</td>
<td></td>
</tr>
</tbody>
</table>
Modulhandbuch mit Stand vom 20.03.2022

Modul: Schwerpunkt: Produktionstechnik (SP 39) [M-MACH-102618]

Erfolgskontrolle(n)
- Mündliche Prüfungen: Dauer ca. 5 min je Leistungspunkt
- Schriftliche Prüfungen: Dauer ca. 20 - 25 min je Leistungspunkt

Anzahl, Form und Umfang der Erfolgskontrollen kann jedoch nach individueller Wahl der Teilleistungen abweichen.

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden ...

- können neue Situationen analysieren und auf Basis der Analysen produktionstechnische Methoden zielgerichtet auswählen sowie ihre Auswahl begründen.
- sind in der Lage, komplexe Produktionsprozesse modellhaft zu beschreiben und zu vergleichen.
- sind in der Lage, für vorgegebene Probleme im produktionstechnischen Umfeld unter Berücksichtigung wissenschaftlicher Theorien, Prinzipien und Methoden neue Lösungen zu generieren.
- sind befähigt, Aufgabenstellungen im produktionstechnischen Umfeld teamorientiert zu lösen und dabei verantwortungsvoll und situationsangemessen vorzugehen.
- können bei der Lösung vorgegebener Problemstellungen die Ergebnisse anderer integrieren.
- besitzen die Fähigkeit, im Team entwickelte Lösungsergebnisse schriftlich darzulegen, zu interpretieren und mit selbstausgewählten Methoden zu präsentieren.
- können Systeme und Prozesse identifizieren, zergliedern, weiterentwickeln und vorgegebene Bewertungsmaßstäbe unter Berücksichtigung technischer, ökonomischer und gesellschaftlicher Randbedingungen anlegen.

Inhalt
Im Rahmen des Moduls werden die Studierenden die Produktionstechnik erlernen und kennenlernen. Durch das vielfältige Vorlesungsangebot und die Exkursionen im Rahmen einiger Vorlesungen werden tiefe Einblicke in den Bereich der Produktionstechnik geschaffen.

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 480 Zeitstunden, entsprechend 16 Leistungspunkten.

Lehr- und Lernformen
- Vorlesungen, Seminare, Workshops, Exkursionen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102099</td>
<td>Experimentelles Schweißtechnisches Praktikum, in Gruppen</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Praktikum Lasermaterialbearbeitung</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-MACH-105346</td>
<td>Produktionstechnisches Labor</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-MACH-110981</td>
<td>Übungen zu Globale Produktion</td>
<td>1 LP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Lehrer/in</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-102099</td>
<td>Experimentelles Schweißtechnisches Praktikum, in Gruppen</td>
<td>Dietrich</td>
</tr>
<tr>
<td>T-MACH-102154</td>
<td>Praktikum Lasermaterialbearbeitung</td>
<td>Schneider</td>
</tr>
<tr>
<td>T-MACH-108878</td>
<td>Praktikum Produktionsintegrierte Messtechnik</td>
<td>Häfner</td>
</tr>
<tr>
<td>T-MACH-105346</td>
<td>Produktionstechnisches Labor</td>
<td>Deml, Fleischer, Furmans, Ovtcharova</td>
</tr>
<tr>
<td>T-MACH-110960</td>
<td>Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils</td>
<td>Zanger</td>
</tr>
<tr>
<td>T-MACH-110981</td>
<td>Übungen zu Globale Produktion</td>
<td>Lanza</td>
</tr>
</tbody>
</table>
Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil) (EV ab 01.10.2021)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil) (EV ab 01.10.2021)

1. Leistungspunkte
7

2. Notenskala
Zehntelnoten

3. Turnus
Jedes Wintersemester

4. Dauer
2 Semester

5. Sprache
Deutsch

6. Level
2

7. Version
2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-109313</td>
<td>Signale und Systeme</td>
<td>6 LP</td>
<td>Heizmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-ETIT-109314</td>
<td>Signale und Systeme - Workshop</td>
<td>1 LP</td>
<td>Heizmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle des Moduls besteht aus:

1. einer schriftlichen Prüfung im Umfang von 120 Minuten zur Lehrveranstaltung Signale und Systeme, (6 LP)
2. einer schriftlichen Ausarbeitung zur Lehrveranstaltung Signale und Systeme - Workshop, (1 LP)

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden sind nach Abschluss des Moduls vertraut mit der Darstellung von Signalen und beherrschen die Grundlagen der Systemtheorie.

Durch Anwendung von Transformationen auf Signale und Systeme sind Sie in der Lage, Lösungsansätze für zeitkontinuierliche sowie zeitdiskrete Problemstellungen der Signalverarbeitung zu beschreiben und zu bewerten. Die erlernten mathematischen Methoden können auf Fragestellungen aus anderen Bereichen des Studiums übertragen werden.

Die Studierenden erlernen im Workshop die Koordination eines Projekts in kleinen Teams und die Darstellung der Ergebnisse in Form einer technischen Dokumentation. Weiterhin sind sie in der Lage, die Theorie im Bereich der digitalen Signalverarbeitungssysteme praktisch anzuwenden.

Inhalt
Das Modul stellt eine Grundlagenvorlesung zur Signalverarbeitung dar. Schwerpunkte der Veranstaltung sind:

- Mathematische Grundlagen (mathematische Räume, Basisfunktionensysteme, Bessel'sche Ungleichung, Projektionstheorem)
- Zeitkontinuierliche Signale (Funktionenräume, Fourier-Transformation, Leckeffekt, Gibbs'sches Phänomen, Zeitdauer-Bandbreite-Produkt)
- Zeitkontinuierliche Systeme (Linearität, Zeitinvarianz, Kausalität, Stabilität, Laplace-Transformation, Systemfunktion, Filterung mit Fensterfunktionen, Hilbert-Transformation)
- Zeitdiskrete Signale (Abtasttheorem, Rekonstruktion, Überabtastung, Unterabtastung, Diskrete Fourier-Transformation)
- Zeitdiskrete Systeme (z-Transformation, Systemfunktion, zeitdiskrete Darstellung kontinuierlicher Systeme, Filterung mit Fensterfunktionen)

Der Workshop greift zahlreiche dieser Schwerpunkte auf und zeigt die praktische Anwendung von Abtasttheorem, zeitdiskreten Signalen und Filterung. Es werden exemplarisch Audiosignale, pulseweitenmodulierte Signale und eine Filterung mittels gleitenden Mittelwerts behandelten.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung. Zusätzlich ist das Bestehen des Workshops Voraussetzung für das Bestehen des Moduls.

Anmerkungen
Workshop wird ab Sommersemester 2021 immer im Sommer angeboten, im Wintersemester 2020/2021 wird der Workshop nicht stattfinden.
Vorlesung und Übung bleiben im Wintersemester.
Moduldauer erhöht sich hiermit auf 2 Semester
Arbeitsaufwand

Jeder Leistungspunkt (Credit Point) entspricht ca. 25-30h Arbeitsaufwand (des Studierenden). Hierbei ist vom durchschnittlichen Studierenden auszugehen, der eine durchschnittliche Leistung erreicht.

Die Vorbereitung (0,5 h), der Besuch (1,5 h) und die Nachbereitung (2 h) der wöchentlichen Vorlesung und Übung sowie die Vorbereitung (50-60 h) und Teilnahme (2 h) an der Klausur ergibt insgesamt einen Arbeitsaufwand von 150-160 h für die Lehrveranstaltung Signale und Systeme, d.h. 6 LP.

Der Arbeitsaufwand des Workshops setzt sich wie folgt zusammen:

1. Präsenzzeit in der Vorbereitungsveranstaltung inkl. Nachbereitung: 2h
2. Bearbeitung der Aufgabenstellung: 23h
3. Anfertigung der schriftlichen Ausarbeitung (Protokoll): 5h

Der Zeitaufwand pro Workshop beträgt etwa 30 Stunden. Dies entspricht 1 LP.

Empfehlungen

Höhere Mathematik I + II
2.89 Modul: Statik starrer Körper (bauiBGP01-TM1) [M-BGU-101745]

Verantwortung: Prof. Dr.-Ing. Peter Betsch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-BGU-103377 Statik Starker Körper

Erfolgskontrolle(n)
- Teilleistung T-BGU-103377 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1, Teil der Orientierungsprüfung nach § 8 Abs. 1

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Einführung der Kraft - Kräftegruppen - Schnittprinzip
- Kräftegleichgewicht: ebene/räumliche Probleme
- Kräftegruppen an Körpern – Resultierende
- Kräftepaar – Moment
- Reduktion räumlicher Kräftesysteme
- Gleichgewicht an starren Körpern
- Technische Aufgaben – Lagerarten – statisch bestimmte Lagerung, Gleichgewichtsbedingungen
- der Schwerpunkt, Streckenlasten/Flächenlasten
- ebene Systeme starrer Körper – Technische Systeme
- innere Kräfte und Momente
- ideale Fachwerke – Aufbau/Abbauprinzip – Ritter'sches Schnittverfahren
- Schnittgrößen im Balken – Schnittgrößenverläufe – Differentieller Zusammenhang
- Superpositionsprinzip
- Haftkräfte und Gleitreibungskräfte – Seilreibung
- Potentialkraft, Potential, potentielle Energie
- stabiles und instabiles Gleichgewicht

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung, Übung, Tutorium: 105 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen: 45 Std.
- Prüfungsvorbereitung: 60 Std.

Summe: 210 Std.
Empfehlungen
keine

Literatur
Gross / Hauger / Schröder Wall - Technische Mechanik 1
2.90 Modul: Strömungslehre (BSc-Modul 12, SL) [M-MACH-102565]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
 Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
 Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 8
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 3
Version 1

Pflichtbestandteile

| T-MACH-105207 | Strömungslehre I & II | 8 LP | Frohnapfel |

Erfolgskontrolle(n)
gemeinsame Erfolgskontrolle der LV "Strömungslehre I" und "Strömungslehre II"; schriftliche Prüfung, 3. Std. (benotet)

Voraussetzungen
Keine

Qualifikationsziele
Nach Abschluss dieses Moduls ist der/die Studierende in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, herzuleiten und auf Beispiele anzuwenden. Er/Sie kann die charakteristischen Eigenschaften von Fluiden benennen und Strömungszustände unterscheiden. Der/Die Studierende ist in der Lage, Strömungsgrößen für grundlegende Anwendungsfälle zu bestimmen. Dies beinhaltet die Berechnung von

- statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken
- zweidimensionalen viskosen Strömungen
- verlustfreien inkompressiblen und kompressiblen Strömungen (Stromfadentheorie)
- verlustbehafteten technischen Rohrströmungen

Inhalt
Eigenschaften von Fluiden, Oberflächenspannung, Hydro- und Aerostatik, Kinematik, Stromfadentheorie (kompressibel und inkompressibel), Verluste in Rohrströmungen, Dimensionsanalyse, dimensionslose Kennzahlen
Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Zusammensetzung der Modulnote
Note der Prüfung

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.

Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzzeit: 64 Stunden Selbststudium: 176 Stunden

Lern- und Lernformen
Vorlesungen + Übungen
Literatur
Zirep J., Bühler, K.: Grundzüge der Strömungslehre, Grundlagen, Statik und Dynamik der Fluide, Springer Vieweg
Kühlmann, H.: Strömungsmechanik, Pearson Studium
Spurk, J.H.: Strömungslehre, Einführung in die Theorieder Strömungen, Springer-Verlag
2.91 Modul: Systemdynamik und Regelungstechnik [M-ETIT-102181]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte
Notenskala
Turnus
Dauer
Sprache
Level
Version

Pflichtbestandteile
T-ETIT-101921 Systemdynamik und Regelungstechnik 6 LP Hohmann

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Qualifikationsziele
- Ziel ist die Vermittlung theoretischer Grundlagen der Regelungstechnik, daher können die Studierenden grundsätzliche regelungstechnische Problemstellungen erkennen und bearbeiten.
- Die Studierenden sind in der Lage, reale Prozesse formal zu beschreiben und Anforderungen an Regelungsstrukturen abzuleiten.
- Sie können die Dynamik von Systemen mit Hilfe graphischer und algebraischer Methoden analysieren.
- Die Studierenden können Reglerentwurfsverfahren für Eingrößensysteme benennen, anhand von Kriterien auswählen, sowie die Entwurfschritte durchführen und die entworfene Regelung beurteilen, ferner können Sie Störungen durch geeignete Regelkreisstrukturen kompensieren.
- Die Studierenden kennen relevante Fachbegriffe der Regelungstechnik und können vorgeschlagene Lösungen beurteilen und zielorientiert diskutieren.
- Sie kennen computergestützte Hilfsmittel zur Bearbeitung systemtheoretischer Fragestellungen und können diese einsetzen.

Inhalt

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Anmerkungen
wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten.

Arbeitsaufwand
Jeder Leistungspunkt (Credit Point) entspricht 30h Arbeitsaufwand (des Studierenden). Unter den Arbeitsaufwand fallen
1. Präsenzzeit in Vorlesung/Übung (2+2 SWS: 60h2 LP)
2. Vor-/Nachbereitung von Vorlesung/Übung/Tutorium(optional) (105h3.5 LP)
3. Vorbereitung/Präsenzzeit schriftliche Prüfung (15h0.5 LP)
2.92 Modul: Systems and Software Engineering [M-ETIT-100537]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Wahlpflichtbereich Elektrotechnik)

Leistungspunkte: 5
Notenskala: Zehntelnoten
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-ETIT-100675 | Systems and Software Engineering | 5 LP | Sax |

Erfolgskontrolle(n)
Schriftlich Prüfung, ca. 120 Minuten. (nach §4 (2), 1 SPO).

Voraussetzungen
keine

Qualifikationsziele
Die Studierenden:

- kennen die wichtigsten Lebenszyklus- und Prozessmodelle (inkl. V-Modell und Agile Methoden).
- sind in der Lage geeignete Verfahren für den Entwurf, die Modellierung und die Bewertung von komplexen Systemen auszuwählen.
- kennen die wichtigsten Diagrammformate von Hardware und Software Modellierungssprachen und können anhand von der Problembeschreibung eines Anwendungsgebiets entsprechende Diagramme aufstellen.
- kennen grundlegende Maßnahmen zur Qualitätssicherung, die während der Bearbeitung eines Projektes anzuwenden sind. Sie kennen die unterschiedlichen Testphasen in einem Projekt und können die Zuverlässigkeit eines Systems beurteilen.
- Sie sind mit den Anforderungen der Funktionalen Sicherheit und des Prozessevaluierungsstandards vertraut.

Inhalt

Zusammensetzung der Modulnote
Notenbildung ergibt sich aus der schriftlichen Prüfung.

Arbeitsaufwand
Für jeden Credit Point (CP) sind 30h Arbeitsaufwand angesetzt. Die hieraus resultierenden 150h verteilen sich wie folgt:

- 15 Wochen à 1,5h Anwesenheit in Vorlesung und 2h Vor- und Nachbereitung pro Woche = 52,5h
- 15 Wochen à 1,5h Anwesenheit in Übung und 2h Vorbereitung (enthält Bearbeitung der Übungsblätter) pro Woche = 52,5h

Vorbereitung für die Klausur = 45h

Empfehlungen
Kenntnisse in Digitaltechnik und Informationstechnik (Lehrveranstaltungen Nr.23615,23622)
Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 7

Notenskala Zehntelnoten

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Deutsch

Level 3

Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100282</td>
<td>Technische Mechanik I</td>
<td>7 LP</td>
</tr>
<tr>
<td>T-MACH-100528</td>
<td>Übungen zu Technische Mechanik I</td>
<td>0 LP</td>
</tr>
</tbody>
</table>

Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.

Erfolgskontrolle(n)
schriftliche Prüfung (Klausur), 90 Minuten; benotet

Die Teilleistung T-MACH-100528 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282).

Voraussetzungen
keine

Qualifikationsziele
Die Studenten können

- die grundlegenden mathematischen Berechnungen der Vektorrechnung und Differential- und Integralrechnung in Anwendung auf mechanische Systeme im Ingenieurwesen ausführen
- ausgehend vom Kraftbegriff verschiedene Gleichgewichtssysteme analysieren, darunter ebene und räumliche Kräftegruppen am starren Körper
- innere Schnittgrößen an ebenen und räumlichen Tragwerken berechnen
- zusätzlich zum Gleichgewichtssaxiom das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- die Stabilität von Gleichgewichtslagen untersuchen
- Linien-, Flächen-, Volumen- und Massenmittelpunkte für homogene und inhomogene Körper in 1D, 2D und 3D berechnen
- die Statik unendbarer Seile analysieren
- Systeme mit Haftreibung berechnen
- im Rahmen der Statik gerader Stäbe innere Beanspruchungen mittels linear elastischer und linear thermo-elastischer Stoffgesetze berechnen

Inhalt

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit: 21,5 Stunden
Selbststudium: 188,5 Stunden
Empfehlungen
keine

Lehr- und Lernformen
Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsblätter, Kolloquien, Sprechstunden (freiwillige Teilnahme)

Literatur
wird in der Vorlesung "Technische Mechanik I" bekanntgegeben

Grundlage für
Technische Mechanik II
2.94 Modul: Technische Mechanik II [M-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 6
Notenskala Zehntelnoten
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MACH-100283</th>
<th>Technische Mechanik II</th>
<th>6 LP</th>
<th>Böhlke, Langhoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-100284</td>
<td>Übungen zu Technische Mechanik II</td>
<td>0 LP</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Diese Teilleistung fließt an dieser Stelle nicht in die Notenberechnung des Moduls ein.

Erfolgskontrolle(n)

schriftliche Prüfung (Klausur), 90 Minuten; benotet

Die Teilleistung T-MACH-100284 ist erfolgreich bestanden, wenn alle schriftlichen Pflichthausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen

Keine

Qualifikationsziele

Die Studierenden können

- Spannungs- und Verzerrungsverteilungen für die Grundlastfälle im Rahmen der linearen Elastizität und linearen Thermoelastizität bewerten
- 3D-Spannungs- und Verzerrungszustände berechnen und bewerten
- das Prinzip der virtuellen Verschiebungen der analytischen Mechanik anwenden
- Energiemethoden anwenden und Näherungslösungen bewerten
- die Stabilität von Gleichgewichtslagen bewerten
- Übungsaufgaben zu den Themen der Vorlesungen unter Verwendung des Computeralgebrasystems MAPLE lösen

Inhalt

Balkenbiegung; Querkraftschub; Torsionstheorie; Spannungs- und Verzerrungszustand in 3D; Hooke'sches Gesetz in 3D; Elastizitätstheorie in 3D; Energiemethoden der Elastostatik; Näherungsverfahren; Stabilität elastischer Stäbe

Anmerkungen

keine

Arbeitsaufwand

Präsenzzzeit: 21,5 Stunden
Selbststudium: 158,5 Stunden

Empfehlungen

keine

Lehr- und Lernformen

Vorlesungen, Übungen, Kleingruppenübungen am Rechner, Bewertung bearbeiteter Übungsaufgaben, Kolloquien, Sprechstunden (freiwillige Teilnahme)
Literatur
wird in der Vorlesung "Technische Mechanik II" bekanntgegeben
2.95 Modul: Technische Thermodynamik und Wärmeübertragung I [M-MACH-102386]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

Leistungspunkte 8
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 3
Version 4

Pflichtbestandteile
| T-MACH-104747 | Technische Thermodynamik und Wärmeübertragung I | 8 LP | Maas |
| T-MACH-105204 | Technische Thermodynamik und Wärmeübertragung I, Vorleistung | 0 LP | Maas |

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich, benotet; Dauer ca. 3h

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden erwerben Fähigkeiten die Grundlagen der Thermodynamik zu benennen und auf Problemstellungen in verschiedenen Bereichen des Maschinenbaus, insbesondere der Energietechnik anzuwenden.

Inhalt
- System, Zustandsgrößen
- Absolute Temperatur, Modellsysteme
- Hauptsatz für ruhende und bewegte Systeme
- Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischungen von idealen und realen Stoffen

Zusammensetzung der Modulnote
Note der schriftlichen Prüfung

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Präsenzzeit: 75 h
Selbststudium: 165 h
Lehr- und Lernformen
Vorlesungen
Übungen
Tutorien
Modul: Technisches Darstellen (bauBGW5-TECDS) [M-BGU-101761]

Verantwortung: Prof. Dr.-Ing. Ralf Roos

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Instand</th>
<th>Leistungspunkte</th>
<th>Roos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-103402</td>
<td>Technisches Darstellen</td>
<td>2 LP</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- Teilleistung T-BGU-103402 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele
Die Studierende können Darstellungstechniken für ingenieurrelevante Fragestellungen einsetzen und im Rahmen von schriftlichen Ausarbeitungen, beim Erstellen von Unterlagen für Öffentlichkeitsarbeit sowie für Präsentationen nutzen. Sie können selbstorganisiert arbeiten und verfügen über organisatorische und didaktische Kompetenzen bezogen auf Teamarbeit und Präsentationen.

Inhalt
In diesem Modul werden die theoretischen Grundlagen zur Zentralperspektive, zur 2-Tafel-Projektion und zur kotierten Projektion, Darstellungstechniken (Skizze, Freihandzeichnung, Modell u.a.), Darstellungsweisen (freihand, DV-gestützt) sowie Methoden der Präsentation vorgestellt und teilweise geübt.

Zusammensetzung der Modulnote
unbenotet

Anmerkungen
keine

Arbeitsaufwand
Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):
- Vorlesung/Übung: 30 Std.

Selbststudium:
- Vor- und Nachbereitung: 5 Std.
- 3 Hausübungen (ohne Anteil aus Übung): 15 Std.
- Gruppenübung (Anteil pro Person): 15 Std.

Summe: 65 Std.

Empfehlungen
keine
Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

Erfolgskontrolle(n)
- Teilleistung T-BGU-103392 mit einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1
Einzelheiten zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen
keine

Qualifikationsziele

Inhalt
- Projektphasen vor Baubeginn und Baukalkulation
- Arbeitsvorbereitung und Bauausführung
- Bauverfahren im Hoch-, Tief-, und Erdbau
- Grundlagen der Maschinen- und Baumaschinentechnik
- Rechnungswesen und Bilanzierung
- Finanzierung und Investition
- Bauvertragsrecht HOAI / VOB
- Grundlagen des Immobilien- und Facility Management

Zusammensetzung der Modulnote
Modulnote ist Note der Prüfung

Anmerkungen
keine

Arbeitsaufwand
Präsenzzzeit (1 SWS = 1 Std. x 15 Wo.):
- Baubetriebstechnik Vorlesung, Übung: 60 Std.
- Baubetriebswirtschaft Vorlesung, Übung: 45 Std.
- Facility- und Immobilienmanagement Vorlesung: 15 Std.

Selbststudium:
- Vor- und Nachbereitung Vorlesungen, Übungen Baubetriebstechnik: 45 Std.
- Vor- und Nachbereitung Vorlesungen, Übungen Baubetriebswirtschaft: 30 Std.
- Vor- und Nachbereitung Vorlesungen Facility- und Immobilienmanagement: 10 Std.
- Prüfungsvorbereitung: 125 Std.

Summe: 330 Std.

Empfehlungen
keine
Modul: Theorie und Praxis der Sportarten - Basiskurse für IngPäd [M-GEISTSOZ-103281]

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Sport

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Leistungspunkte: 6
Notenskala: best./nicht best.
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Deutsch
Level: 3
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Übungstitel</th>
<th>LP</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-GEISTSOZ-103434</td>
<td>Ü Einführung Lehrkompetenz</td>
<td>1</td>
<td>Blicker</td>
</tr>
<tr>
<td>T-GEISTSOZ-103437</td>
<td>Ü Integrative Sportspielvermittlung</td>
<td>2</td>
<td>Schlenker</td>
</tr>
<tr>
<td>T-GEISTSOZ-103435</td>
<td>Ü Cardio-Fit</td>
<td>1</td>
<td>Schlenker</td>
</tr>
<tr>
<td>T-GEISTSOZ-103436</td>
<td>Ü Funktionelles Training</td>
<td>1</td>
<td>Futterer</td>
</tr>
<tr>
<td>T-GEISTSOZ-103442</td>
<td>Ü Kleine Spiele</td>
<td>1</td>
<td>Roth</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
2.99 Modul: Umweltphysik / Energie (bauBGW3-UPHYS) [M-BGU-101760]

Verantwortung: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: Berufliche Fachrichtung (Hauptfach): Bautechnik (Wahlpflichtbereich Bautechnik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-BGU-103401 | Umweltphysik / Energie | 2 LP | Rodrigues Pereira da Franca |

Erfolgskontrolle(n)

- Teilleistung T-BGU-103401 mit unbenoteter Studienleistung nach § 4 Abs. 3

Einzahlungen zur Erfolgskontrolle siehe bei der Teilleistung.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sind in der Lage, Umweltphänomene zu beschreiben und deren Nutzung im Sinne von Energiegewinnung zu erläutern.

Inhalt

- Energiebegriff
- regenerative und nicht-regenerative Energieträger und natürliche Ressourcen
- Energiebilanzen
- Stromerzeugung: Wasserkraft, Windenergie, Solarenergie, Geothermische Kraftwerke, Konventionelle Kraftwerke
- Kontrolle, Regelung und Steuerung von Energieerzeugungsanlagen
- Transportphänomene in der Umwelt, Physik der Atmosphäre
- Vorstellung aktueller Forschungsvorhaben am KIT

Zusammensetzung der Modulnote

unbenotet

Anmerkungen

keine

Arbeitsaufwand

Präsenzzeit (1 SWS = 1 Std. x 15 Wo.):

- Vorlesung: 30 Std.

Selbststudium:

- Vor- und Nachbereitung Vorlesungen/Bearbeitung Übungsblätter: 30 Std.

Summe: 60 Std.

Empfehlungen

keine
2.100 Modul: Vermessungskunde für Bauingenieure und Geowissenschaftler (VerKuBauGeo) [M-BGU-103752]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101683</td>
<td>Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet)</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
2.101 Modul: Volkswirtschaftslehre (IW1VWL) [M-WIWI-101431]

Verantwortung: Prof. Dr. Clemens Puppe
Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: Wahlpflichtfach (2. Unterrichtsfach): Volks- und Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-WIWI-102708 | Volkswirtschaftslehre I: Mikroökonomie | 5 LP | Puppe, Reiß |

Erfolgskontrolle(n)

Voraussetzungen

Keine

Qualifikationsziele

Hauptziel des Moduls ist die Vermittlung der Grundlagen des Denkens in ökonomischen Modellen. Speziell soll der Studierende in die Lage versetzt werden, Gütermärkte und die Determinanten von Marktergebnissen zu analysieren. Im Einzelnen sollen die Studierenden lernen,

- einfache mikroökonomische Begriffe anzuwenden,
- die ökonomische Struktur von realen Phänomenen zu erkennen,
- die Wirkungen von wirtschaftspolitischen Massnahmen auf das Verhalten von Marktteilnehmern (in einfachen ökonomischen Entscheidungssituationen) zu beurteilen und
- evtl. Alternativmaßnahmen vorzuschlagen,
- als Besucher eines Tutoriums einfache ökonomische Zusammenhänge anhand der Bearbeitung von Übungsaufgaben zu erläutern und durch eigene Diskussionsbeiträge zum Lernerfolg der Tutoriumsgruppe beizutragen,
- mit der mikroökonomischen Basisliteratur umzugehen.

Damit erwirbt der Studierende das notwendige Grundlagenwissen, um in der Praxis

- die Struktur ökonomischer Probleme auf mikroökonomischer Ebene zu erkennen und Lösungsvorschläge dafür zu präsentieren,
- aktive Entscheidungsunterstützung für einfache ökonomische Entscheidungsprobleme zu leisten.

Inhalt

In den beiden Hauptteilen der Vorlesung werden Fragen der mikroökonomischen Entscheidungstheorie (Haushalts- und Firmenentscheidungen) sowie Fragen der Markttheorie (Gleichgewichte und Effizienz auf Konkurrenzmärkten) behandelt. Im letzten Teil der Vorlesung werden Probleme des unvollständigen Wettbewerbs (Oligopolmärkte) sowie Grundzüge der Spieltheorie und der Wohlfahrtstheorie vermittelt.

Anmerkungen

Soweit personelle Ressourcen vorhanden sind, wird den Studenten zusätzlich die Möglichkeit gegeben, den Vorlesungsstoff im Rahmen von Tutorien zu festigen.

Arbeitsaufwand

Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 150 Stunden (5 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
2.102 Modul: Wahlpflichtmodul (BSc-Modul WPF) [M-MACH-102746]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
- Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)"
- Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)"
- Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)"
- Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme (ENAT)"
- Wahlpflichtfach (2. Unterrichtsfach): Metalltechnik - Vertiefungsrichtung "System- und Informationstechnik (SIT)"

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Zehntelnoten</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Wahlpflichtmodul (Wahl: 1 Bestandteil)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Notenbereich</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105381</td>
<td>Ausgewählte Themen virtueller Ingenieursanwendungen</td>
<td>4</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105212</td>
<td>CAE-Workshop</td>
<td>4</td>
<td>Albers, Matthiesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105320</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>3</td>
<td>Böhlik, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100535</td>
<td>Einführung in die Mechatronik</td>
<td>6</td>
<td>Böhlend, Reischl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105209</td>
<td>Einführung in die Mehrkörperräumlichkeit</td>
<td>5</td>
<td>Seemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110362</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
<td>3</td>
<td>Frohnapfel, Stroh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102093</td>
<td>Fluidtechnik</td>
<td>4</td>
<td>Geimer, Pilt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>4</td>
<td>Mittwollen, Oellerich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>4</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>3</td>
<td>Böhlik, Frohnapfel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>5</td>
<td>Proppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105452</td>
<td>Mathématiques appliquées aux sciences de l'ingénieur</td>
<td>5</td>
<td>Dantan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>6</td>
<td>Proppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110375</td>
<td>Mathematische Methoden der Kontinuumsmechanik</td>
<td>4</td>
<td>Böhlik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>6</td>
<td>Seemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105295</td>
<td>Mathematische Methoden der Strömungslehre</td>
<td>6</td>
<td>Frohnapfel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105303</td>
<td>Mikrostruktursimulation</td>
<td>5</td>
<td>August, Nestler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>5</td>
<td>Gumbsch, Nestler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100530</td>
<td>Physik für Ingenieure</td>
<td>5</td>
<td>Dienwiebel, Gumbsch, Nesterov-Müller, Weygang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102102</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>5</td>
<td>Schneider</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105147</td>
<td>Product Lifecycle Management</td>
<td>4</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105970</td>
<td>Strukturberechnung von Faserverbundlaminaten</td>
<td>4</td>
<td>Kärger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>4</td>
<td>Dietrich, Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>5</td>
<td>Bernhardt, Kuchab, Pfeil, Toedter, Wagner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>4</td>
<td>Ovtcharova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105290</td>
<td>Technische Schwingungslehre</td>
<td>5</td>
<td>Fidlin, Seemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>4</td>
<td>Maas, Yu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>4</td>
<td>Gumbsch, Weygang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wahlpflichtmodul (Ü) (Wahl:)

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
<th>Leistungspunkte</th>
<th>Notenbereich</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-110330</td>
<td>Übungen zu Einführung in die Finite-Elemente-Methode</td>
<td>1</td>
<td>Böhlik, Langhoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-111033</td>
<td>Übungen zu Einführung in die Numerische Strömungsmechanik</td>
<td>1</td>
<td>Frohnapfel, Stroh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110333</td>
<td>Übungen zu Kontinuumsmechanik der Festkörper und Fluide</td>
<td>1</td>
<td>Böhlik, Frohnapfel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-MACH-110376</td>
<td>Übungen zu Mathematische Methoden der Kontinuumsmechanik</td>
<td>2</td>
<td>Böhlik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Erfolgskontrolle(n)
mündliche/schriftliche Prüfung

Voraussetzungen
Keine

Qualifikationsziele
Die Studierenden haben ihr Wissen in ausgewählten Bereichen des Maschinenbaus vertieft. Aufgrund der großen Auswahl an Veranstaltungen haben sie ihr eigenes Kompetenzprofil im Maschinenbau individuell und passgenau ergänzt und geschärft.

Die konkreten Lernziele werden mit dem jeweiligen Koordinator der Lehrveranstaltung vereinbart.

Inhalt
Siehe Teilleistungen.

Anmerkungen
Insgesamt müssen Fächer aus den entsprechenden Wahlpflichtkatalogen gewählt werden, und zwar im Umfang von 4 LP im Bachelorstudium (siehe entsprechende Studienpläne bzw. Modulhandbücher).

Arbeitsaufwand
Der Arbeitsaufwand beträgt ca. 120 Zeitstunden und entspricht 4 Leistungspunkten. Der Arbeitsaufwand variiert je nach Veranstaltung, bei einer Vorlesungsveranstaltung beispielsweise mit 2 SWS beträgt die Präsenzzeit 28 h und die Vor- und Nachbearbeitungszeit zuhause 92 h, insgesamt 120 h.

Lehr- und Lernformen
Vorlesungen, Übungen
2.103 Modul: Wahrscheinlichkeitstheorie [M-ETIT-102104]

Verantwortung: Dr.-Ing. Holger Jäkel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "Energie- und Automatisierungssysteme" (Wahlpflichtbereich Elektrotechnik)
Berufliche Fachrichtung (Hauptfach): Elektrotechnik - Vertiefungsrichtung "System- und Informationstechnik" (Pflichtbestandteil)

Leistungspunkte 5
Notenskala Zehntelnoten
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 2
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ETIT-101952</td>
<td>5</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Qualifikationsziele
Die Studentinnen und Studenten können Probleme im Bereich der Wahrscheinlichkeitstheorie formal beschreiben und analysieren.
Durch Anwendung von Methoden der Wahrscheinlichkeitstheorie können Studierende Fragestellungen der Elektrotechnik und Informationstechnik modellieren und lösen.

Inhalt
Kenntnisse aus dem Bereich der Stochastik sind für die Arbeit eines Ingenieurs heute unbedingt erforderlich. In der Vorlesung Wahrscheinlichkeitstheorie werden die Studierenden an dieses Wissensgebiet herangeführt. Der Aufbau der Vorlesung ist dabei wie folgt:

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Arbeitsaufwand
1. Präsenzzeit Vorlesung: 15 * 2 h = 30 h
2. Vor-/Nachbereitung Vorlesung: 15 * 5 h = 75 h
3. Präsenzzeit Übung: 15 * 1 h = 15 h
4. Vor-/Nachbereitung Übung: 15 * 2 h = 30 h
5. Klausurvorbereitung und Präsenz in selbiger: in Vor-/Nachbereitung verrechnet
Insgesamt: 150 h = 5 LP

Empfehlungen
Inhalte der Höheren Mathematik I und II und Digitaltechnik werden benötigt.
2.104 Modul: Weitere Leistungen [M-GEISTSOZ-102073]

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Modul: Werkstoffkunde (BSc-Modul 04, WK) [M-MACH-102562]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von:
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fertigungstechnik (FT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Fahrzeugtechnik (FZT)" (Pflichtbestandteil)
Berufliche Fachrichtung (Hauptfach): Metalltechnik - Vertiefungsrichtung "Metallbau- und Installationstechnik (MIT)" (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Zehntelnoten</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>LP</th>
<th>Anbieter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MACH-105145</td>
<td>Werkstoffkunde I & II</td>
<td>11</td>
<td>Gibmeier, Heilmaier, Pundt</td>
</tr>
<tr>
<td>T-MACH-105146</td>
<td>Werkstoffkunde Praktikum</td>
<td>3</td>
<td>Gibmeier, Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Unbenotet: Teilnahme an 10 Praktikumsversuchen, erfolgreiche Eingangskolloquien und 1 Kurzvortrag. Das Praktikum muss vor der Anmeldung zur Prüfung erfolgreich abgeschlossen werden;
Benotet: mündliche Prüfung über Inhalte des gesamten Moduls, ca. 25 Minuten.

Voraussetzungen

keine

Qualifikationsziele

Die Studierenden sollen in diesem Modul die folgenden Fähigkeiten erreichen:

- Vertiefte Kenntnisse über Konstruktionswerkstoffe (auch als Struktur- oder Ingenieurswerkstoffe bezeichnet) und weniger ausführlich Funktionswerkstoffe
- Erkennen der Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten
- Kennenlernen sowie sicheres Anwenden der geeigneten Methoden zur Ermittlung von Kennwerten sowie zur Charakterisierung der Mikrostruktur von Werkstoffen
- Beurteilung von Werkstoffeigenschaften und den daraus resultierenden Verwendungsmöglichkeiten
Inhalt
WK I
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung
WK II
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Der Arbeitsaufwand des Moduls umfasst ca. 420 Stunden.
Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzplicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Lehr- und Lernformen
Das Modul "Werkstoffkunde" besteht aus den Vorlesungen "Werkstoffkunde I und II" mit zugehörigen Übungen in Kleingruppen und einem einwöchigen Laborpraktikum in Kleingruppen.
3 Teilleistungen

3.1 Teilleistung: Alternative Antriebe für Automobile [T-MACH-105655]

Verantwortung: Prof. Dipl.-Ing. Karl Ernst Noreikat
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2133132</th>
<th>Nachhaltige Fahrzeugantriebe</th>
<th>2 SWS</th>
<th>Vorlesung (V) /🗣</th>
<th>Toedter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105655</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>Toedter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105655</th>
<th>Nachhaltige Fahrzeugantriebe</th>
<th>Toedter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105655</td>
<td>Nachhaltige Fahrzeugantriebe (Alternative Antriebe für Automobile)</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎬 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachhaltige Fahrzeugantriebe
2133132, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt
- Nachhaltigkeit
- Umweltbilanzierung
- Gesetzgebung
- Alternative Kraftstoffe
- BEV
- Brennstoffzelle
- Hybridantriebe

Organisatorisches

Die Vorlesung beginnt um 14 h und endet um 15:30 h (nicht um 17:30 h)
3.2 Teilleistung: Analysis 1 - Klausur [T-MATH-106335]

Verantwortung:
Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-101306 - Analysis 1 und 2

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
9

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen
WS 21/22 0100100 Analysis I 4 SWS Vorlesung (V) / Online Frey

Prüfungsveranstaltungen
WS 21/22 7700037 Analysis 1 - Klausur Lamm, Schnaubelt, Hundertmark, Schmoeger, Frey
SS 2022 776700012 Analysis 1 - Klausur Schmoeger, Herzog, Schnaubelt, Lamm, Hundertmark

Legende: 🌐 Online, 📧 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
Der Übungsschein aus Analysis 1 muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102235 - Analysis 1 Übungsschein muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Analysis I
0100100, WS 21/22, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Online

Literaturhinweise
Auf der Iliasseite der Vorlesung wird abschnittsweise ein Kurzskript bereitgestellt (ohne Beweise und Rechnungen). Dieses wird später zu einem kompletten Skriptum vervollständigt.
3.3 Teilleistung: Analysis 1 Übungsschein [T-MATH-102235]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2
Voraussetzung für: T-MATH-106335 - Analysis 1 - Klausur

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>unten</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0100200</td>
<td>Übungen zu 0100100</td>
<td>2</td>
<td>Übung (Ü) / 🕒</td>
<td>Frey</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0190010</td>
<td>Tutorium Analysis I</td>
<td>2</td>
<td>Tutorium (Tu) / 🕒</td>
<td>Frey</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>770167</td>
<td>Analysis 1 Übungsschein</td>
<td>Frey</td>
</tr>
</tbody>
</table>

Legende: 🕒 Online, 🕋 Präsenz/Online gemischt, 🕖 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Der Übungsschein wird auf der Grundlage erfolgreicher bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines ist es hinreichend 40% der maximal möglichen Punkte in den Übungsblättern 1-7 sowie 40% der maximal möglichen Punkte in den Übungsblättern 8-14 zu erreichen.

Voraussetzungen

keine
3.4 Teilleistung: Analysis 2 - Klausur [T-MATH-106336]

Verantwortung: Prof. Dr. Dorothee Frey
PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101306 - Analysis 1 und 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
SS 2022 0150100 Analysis 2 4 SWS Vorlesung (V) Frey

Prüfungsveranstaltungen
WS 21/22 7700015 Analysis 2 - Klausur Schmoeger, Lamm, Hundertmark, Schnaubelt
SS 2022 776700010 Analysis 2 - Klausur Schmoeger, Herzog, Schnaubelt, Lamm, Plum, Hundertmark

Voraussetzungen
Der Übungsschein aus Analysis 2 muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-102236 - Analysis 2 Übungsschein muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Analysis 2
0150100, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Literaturhinweise
Auf der Iliasseite der Vorlesung und der Webseite von Prof. Schnaubelt wird abschnittweise ein Kurzskript bereitgestellt (ohne Beweise und Rechnungen). Dieses wird später zu einem kompletten Skriptum vervollständigt.
3.5 Teilleistung: Analysis 2 Übungsschein [T-MATH-102236]

Verantwortung:
- Prof. Dr. Dorothee Frey
- PD Dr. Gerd Herzog
- Prof. Dr. Dirk Hundertmark
- Prof. Dr. Tobias Lamm
- Prof. Dr. Michael Plum
- Prof. Dr. Wolfgang Reichel
- Dr. Christoph Schmoeger
- Prof. Dr. Roland Schnaubelt

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
- M-MATH-101306 - Analysis 1 und 2
- T-MATH-106336 - Analysis 2 - Klausur

Voraussetzung für:
- T-MATH-106336 - Analysis 2 - Klausur

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 0150200 | Übungen zu 0150100 | 2 SWS | Übung (Ü) | Frey |

Prüfungsveranstaltungen

| SS 2022 | 7700001 | Analysis 2 Übungsschein | Schnaubelt, Schmoeger |

Erfolgskontrolle(n)

Der Übungsschein wird auf der Grundlage erfolgreich bearbeiteter wöchentlicher Übungsblätter vergeben. Für den Erwerb des Übungsscheines ist es hinreichend 40% der maximal möglichen Punkte in den Übungsblättern 1-7 sowie 40% der maximal möglichen Punkte in den Übungsblättern 8-13 zu erreichen.

Voraussetzungen

keine
3.6 Teilleistung: Analysis und Lineare Algebra - Klausur [T-MATH-103325]

Verantwortung: PD Dr. Volker Grimm
Prof. Dr. Marlis Hochbruck
PD Dr. Markus Neher

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-GEISTSOZ-100889 - Orientierungsprüfung Bautechnik
M-MATH-101716 - Analysis und Lineare Algebra

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
9

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Form</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhere Mathematik 1 für die Fachrichtung Bauingenieurwesen: Analysis und Lineare Algebra</td>
<td>0131900</td>
<td>WS 21/22 Vorlesung (V) / Präsenz Neher</td>
<td>4</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Neher</td>
</tr>
<tr>
<td>Übungen zu 0131900</td>
<td>0132000</td>
<td>WS 21/22 Übung (Ü) / Präsenz Neher</td>
<td>2</td>
<td>Übung (Ü) / Präsenz</td>
<td>Neher</td>
</tr>
<tr>
<td>Ergänzungen zu 0131900</td>
<td>0132100</td>
<td>WS 21/22 Vorlesung (V) / Präsenz Neher</td>
<td>1</td>
<td>Vorlesung (V) / Präsenz</td>
<td>Neher</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Form</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis und Lineare Algebra - Klausur</td>
<td>01015866090800854_HM1-Bau-Ing.</td>
<td>WS 21/22 Prüfung (V) / Präsenz Hochbruck</td>
<td></td>
<td>Prüfung (V) / Präsenz</td>
<td>Hochbruck</td>
</tr>
<tr>
<td>Analysis und Lineare Algebra - Klausur</td>
<td>010157660908001854_HM1-Bau-Ing.</td>
<td>SS 2022 Prüfung (V) / Präsenz Hochbruck</td>
<td></td>
<td>Prüfung (V) / Präsenz</td>
<td>Hochbruck</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Höhere Mathematik 1 für die Fachrichtung Bauingenieurwesen: Analysis und Lineare Algebra

0131900, WS 21/22, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
3.7 Teilleistung: Angewandte Statistik [T-BGU-103381]

Verantwortung: Dr. Frank Hase
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101749 - Angewandte Statistik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungseinheit</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Angewandte Statistik</td>
<td>2</td>
<td>Hase</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungseinheit</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Angewandte Statistik</td>
<td>2</td>
<td>Hase</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Angewandte Statistik</td>
<td>2</td>
<td>Hase</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.8 Teilleistung: Ansätze der gewerblich-technischen Lehrerbildung [T-GEISTSOZ-101141]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100659 - Planung beruflicher Bildung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>5012130</td>
<td>Ansätze der gewerblich-technischen Lehrerbildung/evtl. Planung beruflicher Bildung Gruppe 2</td>
<td>2 SWS</td>
<td>Seminar (S) / 🍭</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7400325</td>
<td>Ansätze der gewerblich-technischen Lehrerbildung</td>
<td>Schwarz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400550</td>
<td>Ansätze der gewerblich-technischen Lehrerbildung</td>
<td>Langemeyer</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Ansätze der gewerblich-technischen Lehrerbildung/evtl. Planung beruflicher Bildung Gruppe 2
5012130, SS 2022, 2 SWS, im Studierendenportal anzeigen
Seminar (S) Präsenz/Online gemischt
Inhalt

Lernziele:
Ziel der Veranstaltung ist, die Studierenden in grundsätzliche Aspekte der Lehrerbildung im Allgemeinen und der Lehrerbildung im gewerblich-technischen Bereich im Besonderen einzuführen. Die Studierenden sollen aufgrund der rezipierenden und aktiven Beschäftigung mit den gegebenen Themen nachfolgend in der Lage sein, wesentliche Strukturmerkmale der Lehrerbildung zu erkennen und einzuordnen sowie aufgrund der innerhalb der Veranstaltung gewonnenen Erkenntnisse und Anwendungserfahrungen in einfacher Weise wissenschaftlich nutzbar zu machen.

Inhalt:

Literatur:

Voraussetzungen für ECTS-Nachweis (Studienleistung):

Organisatorisches
Anmeldung und weitere Informationen ab 01.04.2022 unter https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
3.9 Teilleistung: Antriebssystemtechnik A: Fahrzeugantriebstechnik [T-MACH-105233]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen
 Sascha Ott

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

| SS 2022 | 2146180 Antriebssystemtechnik A: Fahrzeugantriebstechnik | 2 SWS Vorlesung (V) / 🗣 | Albers, Ott |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105233 Antriebssystemtechnik A: Fahrzeugantriebstechnik | | Albers, Ott |
| SS 2022 | 76-T-MACH-105233 Antriebssystemtechnik A: Fahrzeugantriebstechnik | | Albers, Ott |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung: 60 min Prüfungsdauer

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Antriebssystemtechnik A: Fahrzeugantriebstechnik

Vorlesung (V) Präsenz

2146180, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Die Studierenden erwerben die grundlegenden Kompetenzen, die benötigt werden, um zukünftige energieeffiziente und gleichzeitig komfortabel fahrbare Antriebstränge zu entwickeln. Hierbei werden ganzheitliche Entwicklungsmethoden und Bewertungen von Antriebsystemen betrachtet. Die Schwerpunkte lassen sich hierbei in folgende Kapitel gliedern:

- System Antriebsstrang
- System Fahrer
- System Umgebung
- Systemkomponenten
- Entwicklungsprozess

Empfehlungen für ergänzende Lehrveranstaltungen:

- Antriebssystemtechnik B: Stationäre Antriebssysteme

Literaturhinweise

Kirchner, E.; "Leistungsübertragung in Fahrzeuggetrieben: Grundlagen der Auslegung, Entwicklung und Validierung von Fahrzeuggetrieben und deren Komponenten", Springer Verlag Berlin Heidelberg 2007

Naunheimer, H.; "Fahrzeuggetriebe: Grundlagen, Auswahl, Auslegung und Konstruktion", Springer Verlag Berlin Heidelberg 2007
3.10 Teilleistung: Arbeitsgemeinschaft Experimentalphysik A [T-PHYS-103246]

Verantwortung: Prof. Dr. Günter Quast
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101682 - Grundlagen der Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4043012</td>
<td>Arbeitsgemeinschaft zu Experimentalphysik A für Ingenieurpädagogen</td>
<td>2 SWS Übung (Ü)</td>
<td>Quast</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800135</td>
<td>Quast</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7800135</td>
<td>Quast</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.11 Teilleistung: Arbeitsgemeinschaft Experimentalphysik B [T-PHYS-103248]

Verantwortung: Prof. Dr. Günter Quast
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101682 - Grundlagen der Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilleistung</td>
<td>Arbeitsgemeinschaft zur Experimentalphysik B für Ingenieurpädagogen</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Studienleistung</th>
<th>Veranstaltungsumfang</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>4043022</td>
<td>Arbeitsgemeinschaft zur Experimentalphysik B für Ingenieurpädagogen</td>
<td>2 SWS Seminar (S) / 🗣️</td>
<td>Quast</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Veranstaltungsumfang</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800136</td>
<td>Arbeitsgemeinschaft Experimentalphysik B</td>
<td>Quast</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7800136</td>
<td>Arbeitsgemeinschaft Experimentalphysik B</td>
<td>Quast</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🗣️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Voraussetzungen

keine
3.12 Teilleistung: Arbeitswissenschaft I: Ergonomie [T-MACH-105518]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2109035</th>
<th>Arbeitswissenschaft I: Ergonomie 2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Deml</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105518</th>
<th>Arbeitswissenschaft I: Ergonomie</th>
<th>Deml</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105518</td>
<td>Arbeitswissenschaft I: Ergonomie</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Prüfung Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft I: Ergonomie

2109035, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorschriften (V) Präsenz/Online gemischt

Inhalt

1. Grundlagen menschlicher Arbeit
2. Verhaltenswissenschaftliche Datenerhebung
3. Arbeitsplatzgestaltung
4. Arbeitsumweltgestaltung
5. Arbeitswirtschaft
6. Arbeitsrecht und Interessensvertretung

Lernziele:

Die Studierende erwerben vor allem grundlegendes Wissen im Bereich der Ergonomie:

• Sie können Arbeitsplätze hinsichtlich kognitiver, physiologischer, anthropometrischer und sicherheitstechnischer Aspekte ergonomisch gestalten.
• Ebenso kennen sie physikalische und psychophysische Grundlagen (z. B. Lärm, Beleuchtung, Klima) im Bereich der Arbeitsumweltgestaltung.
• Die Studierenden sind zudem in der Lage, Arbeitsplätze arbeitswirtschaftlich zu bewerten, indem sie wesentliche Methoden des Zeitstudiums und der Entgeltfindung kennen und anwenden können.
• Schließlich erwerben sie auch einen ersten, überblickhaften Einblick in das deutsche Arbeitsrecht und die Organisation der überbetrieblichen Interessensvertretung.

Darüber hinaus lernen die Teilnehmer wesentliche Methoden der verhaltenswissenschaftlichen Datenerhebung (z. B. Eyetracking, EKG, Dual-Task-Paradigma) kennen.
Organisatorisches
In der zweiten Hälfte des Semesters, **ab dem 15.12.2021**, findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
3.13 Teilleistung: Arbeitswissenschaft II: Arbeitsorganisation [T-MACH-105519]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>UID</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Modulsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2109036</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>2 SWS</td>
<td>Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>UID</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Modulsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105519</td>
<td>Arbeitswissenschaft II: Arbeitsorganisation</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Arbeitswissenschaft II: Arbeitsorganisation

Inhalt
Lehrinhalt:

1. Grundlagen der Arbeitsorganisation
2. Empirische Forschungsmethoden
3. Individualebene
 - Personalauswahl
 - Personalentwicklung
 - Personalbeurteilung
 - Arbeitszufriedenheit und Arbeitsmotivation
4. Gruppenebene
 - Interaktion und Kommunikation
 - Führung von Mitarbeitern
 - Teamarbeit
5. Organisationsebene
 - Aufbauorganisation
 - Ablauforganisation
 - Produktionsorganisation

Lernziele:
Die Studierenden erwerben einen ersten Einblick in empirische Forschungsmethoden (z. B. Experimentaldesign, statistische Datenauswertung). Darüber hinaus erwerben sie vor allem grundlegendes Wissen im Bereich der Arbeitsorganisation:

- **Organisationsebene.** Im Rahmen des Moduls erwerben die Studierenden auch grundlegendes Wissen im Bereich der Aufbau-, Ablauf- und Produktionsorganisation.
- **Gruppenebene.** Außerdem lernen sie essentielle Aspekte der betrieblichen Teamarbeit kennen und kennen einschlägige Theorien aus dem Bereich der Interaktion und Kommunikation, der Führung von Mitarbeitern sowie der Arbeitszufriedenheit und -motivation.
- **Individualebene.** Schließlich lernen die Studierenden auch Methoden aus dem Bereich der Personalauswahl, -entwicklung und -beurteilung kennen.
Organisatorisches
In der zweiten Hälfte des Semesters, ab dem 15.12.2021, findet die Veranstaltung "Arbeitswissenschaft II: Arbeitsorganisation" am Mittwoch und Donnerstag statt.
- schriftliche Prüfung
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).
Mit einer gültigen KIT-E-Mail-Adresse können Sie das Passwort bei elisabeth.schlund@kit.edu schriftlich erfragen.

Literaturhinweise
Die Kursmaterialien stehen auf ILIAS zum Download zur Verfügung.
3.14 Teilleistung: Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen [T-MACH-105462]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteile von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2190411</th>
<th>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Dagan, Metz</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105462</th>
<th>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</th>
<th>Dagan, Metz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105462</td>
<td>Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,❌ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 1/2 Stunde

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Ausgewählte Probleme der angewandten Reaktorphysik mit Übungen
2190411, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

- Kernenergie und -kräfte
- Radioaktive Umwandlungen der Atomkerne
- Kernprozesse
- Kernspaltung und verzögerte Neutronen
- Grundbegriffe der Wirkungsquerschnitte
- Grundprinzipien der Kettenreaktion
- Statistische Theorie des monoenergetischen Reaktors
- Einführung in Reaktorkinetik
- Kernphysikalisches Praktikum

Lernziel: Die Studierenden

- kennen die grundlegenden Begriffe, die in der Reaktorphysik vorkommen
- verstehen und berechnen den Prozess von Zunahme oder Zerfall von radioaktiven Materialien und die dazu gehörige biologische Schädigung
- kennen fundamentale Parameter, um einem stabilen Reaktor zu betreiben
- verstehen wichtige dynamische Prozesse von Kernreaktoren.

Präsenzzeit 26 Stunden
Selbststudium: 94 Stunden
mündlich ca. 30 min
Literaturhinweise
K. Wirtz Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton, Nuclear reactor Analysis, J. Wiley & Sons, Inc. 1975 (in English)
3.15 Teilleistung: Ausgewählte Themen virtueller Ingenieursanwendungen [T-MACH-105381]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>3122031</th>
<th>Virtual Engineering (Specific Topics)</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥 Ovtcharova, Maier</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105381 | Virtual Engineering (Specific Topics) | Ovtcharova |
| SS 2022 | 76-T-MACH-105381 | Virtual Engineering (Specific Topics) | Ovtcharova |

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Engineering (Specific Topics)
3122031, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Studierende können

- die Grundlagen des Virtual Engineerings erläutern und exemplarisch Modellierungswerkzeuge benennen und den entsprechenden Methoden und Prozessen zuordnen
- Validierungsfragestellungen im Produktentstehungsprozess formulieren und naheliegende Lösungsmethoden benennen
- die Grundlagen des Systems Engineering erläutern und den Zusammenhang zum Produktentstehungsprozess herstellen
- einzelne Methoden der Digitalen Fabrik erläutern sowie die Funktionen der Digitalen Fabrik im Kontext des Produktentstehungsprozesses darstellen
- die theoretischen und technischen Grundlagen der Virtual Reality Technologie erläutern und den Zusammenhang zum Virtual Engineering aufzeigen

Organisatorisches

Vorlesungszeiten siehe ILIAS / Lecture times see ILIAS

Literaturhinweise

Lecture slides / Vorlesungsfolien
3.16 Teilleistung: Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben [T-MACH-110958]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Dr.-Ing. Hartmut Faust

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2146208</th>
<th>Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Faust</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-105536 | Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben | Faust, Albers |

Erfolgskontrolle(n)
mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Auslegung und Optimierung von konventionellen und elektrifizierten Fahrzeuggetrieben
2146208, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

- Getriebetypen: Handschalt- (MT) & automatisierte Schaltgetriebe (AMT), Planeten-Wandler-Automaten (AT), Doppelkupplungs- (DCT), stufenlose (CVT) und geared neutral Getriebe (IVT), Hybridgetriebe (Serienell, parallele, Multimode-, Powersplit-Hybride), E-Achsen
- Drehschwingungsdämpfer: Gedämpfte Kupplungsscheibe, Zweimassenschwingungrad, Fliehkraftpendel (FKP), Lock-Up-Dämpfer für Drehmomentwandler
- Anfahrelemente: Trockene Einfachkupplung, trockene und nasslaufende Doppelkupplung, hydrodynamischer Drehmomentwandler, Sonderformen, e-motorisch
- Kraftübertragung: Vorgelege-Getriebe, Planetensatz, CVT-Variator, Kette, Synchronisierung, Schalt- und Klauenkupplungen, Reversierung, Differenziale und Sperrsystens, koaxiale undachsparallele E-Achsantriebe
- Getriebesteuerung: Schaltsysteme für MT, Aktuatoren für Kupplungen und Schaltung, hydraulische Steuerung, elektronische Steuerung, Softwareapplikation, Komfort und Sportlichkeit
- Sonderbauformen: Triebstränge von Nutzfahrzeugen, Hydrostat mit Leistungsverzweigung, Torque Vectoring
- E-Mobilität: Einteilung in 5 Ausbaustufen der Elektrifizierung, 4 Hybrid-Konfigurationen, 7 Parallelhybrid-Architekturen, Hybridisierte Getriebe (P2, P2.5, P3, P4), Dedicated Hybrid Transmissions (DHT; seriell/parallel/Multimode, Powersplit, neue Konzepte), Getriebe für Elektrofahrzeuge (E-Achsgewbirhe, koaxial und achsparallel)
Organisatorisches

Lernziele
Die Studenten erwerben das Wissen aus aktuellen Getriebe-, Hybrid- und reinen Elektroantriebs-Entwicklungen über …

- die Funktionsweise und Auslegung von konventionellen und elektrifizierten Fahrzeuggetrieben und deren Komponenten;
- Konstruktions- und Funktionsprinzipien der wichtigsten Komponenten von Handschalt-, Doppelkupplungs-, stufenlosen und Planetenautomat-Getrieben;
- komfortrelevante Zusammenhänge und Abhilfemaßnahmen;
- die Hybridisierung und Elektrifizierung der Triebstränge auf Basis bekannter Getriebetypen und mit speziellen sogenannten Dedicated Hybrid Transmissions (DHT) sowie Bewertung der Konzepte auf Systemebene.
3.17 Teilleistung: Auslegung von Brennstoffzellensystemen [T-MACH-111398]

Verantwortung: Dr.-Ing. Jan Haußmann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2145200 | Auslegung von Brennstoffzellensystemen | 2 SWS | Vorlesung (V) / 🗣️ | Haußmann |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-111398 | Auslegung von Brennstoffzellensystemen | Haußmann |

Legende: 🖥 Online, 🕰️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrollen

Mündliche Prüfung (ca. 20 min)

Voraussetzungen

Keine

Empfehlungen

Der Besuch der Vorlesung Antriebssystemtechnik A (LV: 2146180) wird empfohlen, ist jedoch nicht Voraussetzung für diese Vorlesung.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Auslegung von Brennstoffzellensystemen
2145200, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Die behandelten Themen sind im Einzelnen:
- Aufbau eines Brennstoffzellenantriebsstrangs, Hybridisierung von Batterie und Brennstoffzelle
- Aufbau von Brennstoffzellensystemen (Brennstoffzelle und Systemkomponenten)
- Auslegung von Brennstoffzellen in Bezug auf Stoffströme, Wärmetransport und elektrischer Leitung
- Messtechnik zur Analyse von Brennstoffzellen sowie Regelung und Steuerung der Systemkomponenten
- Aufbau und Auslegung von Brennstoffzellenkomponenten und ihre Fertigung
- Auslegung von Brennstoffzellensystemen in Bezug auf Leistung und Wirkungsgrad
- Degradation von Brennstoffzellenkomponenten und Auswirkungen auf die Lebensdauer des Brennstoffzellensystems

Lernziele:
Die Studierenden …
- können verschiedene Systemtopologien von Antriebssträngen und Brennstoffzellensystemen unterscheiden und deren Einsatzmöglichkeiten zuordnen
- können die Funktion von Systemkomponenten benennen und deren Einfluss auf die Gesamtauslegung eines Brennstoffzellensystems zuordnen
- können den Aufbau einer PEM-Brennstoffzelle und alternative Brennstoffzellentypen darstellen und die Funktion der einzelnen Komponenten zuordnen und benennen
- können die Brennstoffzelle hinsichtlich elektrischer Leitung, Wärmetransport und Stoffströme auslegen und sowohl qualitativ als auch quantitativ in Größe und Geometrie bestimmen

Organisatorisches
Die Lehrveranstaltung wird erstmalig im Wintersemester 2021/22 angeboten.

Literaturhinweise
Medien:
- Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Media:
- Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
3.18 Teilleistung: Automatisierte Produktionsanlagen [T-MACH-108844]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
- M-MACH-102589 - Schwerpunkt: Produktionssysteme
- M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102618 - Schwerpunkt: Produktionstechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Voraussetzung für:
- T-MACH-110335 - International Production Engineering B

Lehrveranstaltungen

| SS 2022 | 2150904 | Automatisierte Produktionsanlagen | 6 SWS | Vorlesung / Übung (VÜ) / 🧩 | Fleischer |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-108844 | Automatisierte Produktionsanlagen | Fleischer |
| SS 2022 | 76-T-MACH-108844 | Automatisierte Produktionsanlagen | Fleischer |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (40 Minuten)

Voraussetzungen

"T-MACH-102162 - Automatisierte Produktionsanlagen" darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Automatisierte Produktionsanlagen
2150904, SS 2022, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt
Inhalt
Die Vorlesung gibt einen Überblick über den Aufbau und die Funktionsweise von automatisierten Produktionsanlagen. In einem Grundlagenkapitel werden die grundlegenden Elemente zur Realisierung automatisierter Produktionsanlagen vermittelt. Hierunter fallen:

- Antriebs- und Steuerungstechnik
- Handhabungstechnik zur Handhabung von Werkstücken und Werkzeugen
- Industrierobotertechnik
- Qualitätssicherung in automatisierten Produktionsanlagen
- Automaten, Zellen, Zentren und Systeme zur Fertigung und Montage
- Strukturen von Mehrmaschinensystemen
- Projektierung von automatisierten Produktionsanlagen

Durch eine interdisziplinäre Betrachtung dieser Teilgebiete ergeben sich Schnittstellen zu Industrie 4.0 Ansätzen. Im zweiten Teil der Vorlesung werden die vermittelten Grundlagen anhand praktisch ausgeführter Produktionsprozesse zur Herstellung von Komponenten im Automobilbau (Karosserie und Antriebstechnik) verdeutlicht und die automatisierten Produktionsanlagen zur Herstellung dieser Komponenten analysiert.

Im Bereich der KFZ-Antriebstechnik wird sowohl der automatisierte Produktionsprozess zur Herstellung des konventionellen Verbrennungsmotors als auch der automatisierte Produktionsprozess zu Herstellung des zukünftigen Elektroantriebsstranges im KFZ für die Elektromobilität (Elektromotor und Batterie) betrachtet. Im Bereich des Karosseriebaus liegt der Fokus auf der Analyse der Prozesskette zur automatisierten Herstellung konventioneller Blech-Karosseriebauteile sowie zur automatisierten Herstellung von Karosseriebauteilen aus faserverstärkten Kunststoffen.

Innerhalb von Übungen werden die Inhalte aus der Vorlesung vertieft und auf konkrete Problem- und Aufgabenstellungen angewendet.

Lernziele:
Die Studierenden …

- sind fähig, ausgeführte automatisierte Produktionsanlagen zu analysieren und ihre Bestandteile zu beschreiben.
- können die an ausgeführten Beispielen umgesetzte Automatisierung von Produktionsanlagen beurteilen und auf neue Problemstellungen anwenden.
- sind in der Lage, die Automatisierungsaufgaben in Produktionsanlagen und die zur Umsetzung erforderlichen Komponenten zu nennen.
- sind fähig, bzgl. einer gegebenen Aufgabenstellung die Projektierung einer automatisierten Produktionsanlage durchzuführen sowie die zur Realisierung erforderlichen Komponenten zu ermitteln.
- sind in der Lage, unterschiedliche Konzepte für Mehrmaschinensysteme zu vergleichen und für einen gegebenen Anwendungsfall geeignet auszuwählen.

Arbeitsaufwand:

MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Vorlesungstermine dienstags 8:00 Uhr und donnerstags 8:00 Uhr, Übungstermine donnerstags 10:00 Uhr.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.19 Teilleistung: Bachelorarbeit [T-GEISTSOZ-103332]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussarbeit</td>
<td>10</td>
<td>Drittelnoten</td>
<td>3</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-101720 - Modul Bachelorarbeit

Erfolgskontrolle(n)
Benotung der schriftlichen Ausarbeitung zu einem eigenen Forschungsthema in der Beruflichen Fachrichtung.

Voraussetzungen
keine

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 3 Monate
- **Maximale Verlängerungsfrist**: 1 Monate
- **Korrekturfrist**: 6 Wochen
3.20 Teilleistung: Bauchemie [T-BGU-103400]

Verantwortung: Dr. rer. nat. Andreas Bogner
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101759 - Bauchemie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Vorlesungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200108</td>
<td>Bauchemie</td>
<td>2</td>
<td>Vorlesung (V) / 📣</td>
<td>Bogner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Art</th>
<th>Vorlesungsleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231103400</td>
<td>Bauchemie</td>
<td>Vorlesung (V) / 📣</td>
<td>Bogner</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8231103400</td>
<td>Bauchemie</td>
<td>Vorlesung (V) / 📣</td>
<td>Bogner</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 📣 Präsenz, X Abgesagt

Erfolgskontrolle(n)

- schriftliches Testat, 30 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.21 Teilleistung: Bauinformatik I [T-BGU-103396]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101757 - Bauinformatik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>ECTS</th>
<th>Typ</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Bauinformatik I</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Übungen zu Bauinformatik I</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>ECTS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Bauinformatik I</td>
<td>Uhlmann</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>Bauinformatik I</td>
<td>Uhlmann</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- schriftliches Testat, 30 min.

Voraussetzungen

Die Studienleistung "Programmieraufgaben Bauinformatik I" (T-BGU-103397) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-103397 - Programmieraufgaben Bauinformatik I muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine
3.22 Teilleistung: Bauinformatik II [T-BGU-103398]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101758 - Bauinformatik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200422</td>
<td>Bauinformatik II</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200423</td>
<td>Übungen zu Bauinformatik II</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kurs</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8234103398</td>
<td>Bauinformatik II</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8234103398</td>
<td>Bauinformatik II</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Legende: 📚 Online, 🖥 Präsenz/Online gemischt, 📜 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliches Testat, 30 min.

Voraussetzungen

Die Studienleistung "Programmieraufgaben Bauinformatik II" (T-BGU-103399) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-103399 - Programmieraufgaben Bauinformatik II muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine
3.23 Teilleistung: Baukonstruktionslehre [T-BGU-103386]

Verantwortung: Prof. Dr.-Ing. Philipp Dietsch
Michael Steilner

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101751 - Baukonstruktionen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Lerninhalte</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>Baukonstruktionslehre</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200310</td>
<td>Baukonstruktionslehre</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Dietsch, Steilner</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200311</td>
<td>Übungen zu Baukonstruktionslehre</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Mitarbeiter/innen, Steilner</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200312</td>
<td>Tutorien zu Baukonstruktionslehre</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Steilner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8233103386</td>
<td>Baukonstruktionslehre</td>
<td>Steilner</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8233103386</td>
<td>Baukonstruktionslehre</td>
<td>Steilner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.24 Teilleistung: Bauphysik [T-BGU-103384]

Verantwortung: Prof. Dr.-Ing. Frank Dehn
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101751 - Baukonstruktionen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Wöchentliche Einheit</th>
<th>Prüfung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Bauphysik</td>
<td>6200208</td>
<td>Vorlesung (V) / 🗣</td>
<td>Dehn</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Übungen zu Bauphysik</td>
<td>6200209</td>
<td>Übung (Ü) / 🗣</td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Bauphysik</td>
<td>8232103384</td>
<td>Dehn</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Bauphysik</td>
<td>8232103384</td>
<td>Dehn</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 60 min.
Teil der Orientierungsprüfung nach § 8 Abs. 1, bis zum Ende des Prüfungszeitraums des 2. Fachsemesters abzulegen

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.25 Teilleistung: Baustatik I [T-BGU-103387]

Verantwortung: Prof. Dr.-Ing. Steffen Freitag
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101752 - Baustatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 6200401</td>
<td>Baustatik I</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Freitag</td>
</tr>
<tr>
<td>SS 2022 6200402</td>
<td>Übungen zu Baustatik I</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Weber</td>
</tr>
<tr>
<td>SS 2022 6200403</td>
<td>Tutorien zu Baustatik I</td>
<td>2 SWS</td>
<td>Tutorium (Tu) / 🗣</td>
<td>Weber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 8234103387</td>
<td>Baustatik I</td>
<td></td>
<td></td>
<td>Freitag</td>
</tr>
<tr>
<td>SS 2022 8234103387</td>
<td>Baustatik I</td>
<td></td>
<td></td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung, 120 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.26 Teilleistung: Baustatik II [T-BGU-103388]

Verantwortung: Prof. Dr.-Ing. Steffen Freitag
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101752 - Baustatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 6200501</td>
<td>Baustatik II</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
</tr>
<tr>
<td>6200502</td>
<td>Übungen zu Baustatik II</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Übung (Ü) /</td>
</tr>
<tr>
<td>6200503</td>
<td>Tutorien zu Baustatik II</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 8235103388</td>
</tr>
<tr>
<td>Freitag</td>
</tr>
<tr>
<td>SS 2022 8235103388</td>
</tr>
<tr>
<td>Wagner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung, 120 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.27 Teilleistung: Baustoffkunde [T-BGU-103382]

Verantwortung: Prof. Dr.-Ing. Frank Dehn
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101750 - Baustoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lernveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Format</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200206</td>
<td>Baustoffkunde</td>
<td>1</td>
<td>V/.executeQuery</td>
<td>Dehn</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200207</td>
<td>Übungen zu Baustoffkunde</td>
<td>1</td>
<td>Ü/.executeQuery</td>
<td>Assistenten</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8232103382</td>
<td>Baustoffkunde</td>
<td>Dehn</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8232103382</td>
<td>Baustoffkunde</td>
<td>Dehn</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.
Teil der Orientierungsprüfung nach § 8 Abs. 1, bis zum Ende des Prüfungszeitraums des 2. Fachsemesters abzulegen

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.28 Teilleistung: Berufspädagogisches Praktikum (4 Wochen) [T-GEISTSOZ-109720]

Einrichtung: Universität gesamt
Bestandteil von: M-GEISTSOZ-104760 - Berufspädagogisches Praktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
SS 2022 7400025 Berufspädagogisches Praktikum (4 Wochen) Gidion

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines Stundennachweises (nach Landesvorgaben). Außerdem bilden die Praktikumserfahrungen einen wesentlichen Bestandteil der Modulprüfung.

Voraussetzungen
keine

Empfehlungen
Das "Vorbereitende Seminar zum Berufspädagogischen bzw. Schul-Praktikum" sollte erfolgreich abgeschlossen sein.
3.29 Teilleistung: Betriebspraktikum [T-GEISTSOZ-109866]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Kit-Fakultät für Geistes- und Sozialwissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-GEISTSOZ-100643 - Betriebspraktikum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung praktisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
</tr>
<tr>
<td>Notenskala</td>
<td>best./nicht best.</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Sem.</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
3.30 Teilleistung: Betriebsstoffe für motorische Antriebe [T-MACH-111623]

Verantwortung: Hon.-Prof. Dr. Bernhard Ulrich Kehrwald
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2133108</td>
<td>Betriebsstoffe für motorische Antriebe</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 76-T-MACH-105184</td>
<td>Betriebsstoffe für Verbrennungsmotoren</td>
<td></td>
<td></td>
<td>Kehrwald</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer ca. 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Betriebsstoffe für motorische Antriebe
2133108, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Vorgestellt werden auch elektrische Antriebe und Brennstoffzellen-Antrieb mit den zugehörigen Betriebsstoffen

- Einführung, Grundlagen, Primärenergie und Energieketten
- Anschauliche Chemie der Kohlenwasserstoffe
- Fossile Energieträger, Exploration, Verarbeitung, Normen
- Betriebsstoffe nicht fossil, regenerativ, alternativ
- Kraftstoffe, Schmierstoffe, Kühlmittel, AdBlue
- Laboranalytik, Testing, Prüfstände und Messtechnik
- Exkursion Prüffelder für motorische Antriebe 0,5 bis 3.500 kW

Literaturhinweise

Skript
3.31 Teilleistung: CAE-Workshop [T-MACH-105212]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>WS 21/22</th>
<th>SS 2022</th>
<th>CAE-Workshop</th>
<th>3 SWS</th>
<th>Block (B)</th>
<th>Albers, Mitarbeiter</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>WS 21/22</th>
<th>SS 2022</th>
<th>CAE-Workshop</th>
<th>3 SWS</th>
<th>Block (B)</th>
<th>Albers</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (mit praktischem Teil am Computer), Dauer 60 min

Voraussetzungen
Keine

Anmerkungen
Für eine erfolgreiche Teilnahme an der Prüfung ist eine durchgängige Anwesenheit an den Workshoptagen erforderlich. Teilnehmerzahl beschränkt. Auswahl erfolgt nach einem Auswahlverfahren

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CAE-Workshop
2147175, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

V

Inhalt

Inhalt:

- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...

- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung inindustrieüblichen Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich
Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester. Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage. Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt. Content is provided on Ilias.

CAE-Workshop
2147175, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:
- Einführung in die Finite Elemente Analyse (FEA)
- Spannungs- und Modalanalyse von FE-Modellen unter Nutzung von Abaqus CAE als Preprocessor und Abaqus als Solver
- Einführung in die Topologie- und Gestaltoptimierung
- Erstellung und Berechnung verschiedener Optimierungsmodelle mit dem Abaqus Optimierungspaket

Die Studierenden sind fähig ...
- die Einsatzzwecke und Grenzen der numerischen Simulation und Optimierung bei der virtuellen Produktentwicklung zu nennen.
- einfache praxisnahe Aufgaben aus dem Bereich der Finiten Elemente Analyse und Strukturoptimierung in industriegebräuchlicher Software zu lösen.
- Ergebnisse einer Simulation oder Optimierung zu hinterfragen und zu bewerten.
- Fehler in einer Simulation oder Optimierung zu identifizieren und zu verbessern.

Präsenzzeit: 31,5 h
Selbststudium: 88,5 h
Prüfung: 1h in der Regel schriftlich

Organisatorisches
Wir empfehlen den Workshop ab dem 5. Semester. Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage. Anwesenheitspflicht

Literaturhinweise
Kursunterlagen werden in Ilias bereitgestellt. Content is provided on Ilias.
3.32 Teilleistung: CFD-Praktikum mit OpenFOAM [T-MACH-105313]

Verantwortung: Dr.-Ing. Rainer Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kurzbeschreibung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2169459</td>
<td>CFD-Praktikum mit OpenFOAM</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2169459</td>
<td>CFD-Praktikum mit OpenFOAM</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Kurzbeschreibung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105313</td>
<td>CFD-Praktikum mit Open Foam</td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105313</td>
<td>CFD-Praktikum mit Open Foam</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Erfolgreiche Lösung der Übungsaufgaben

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kurzbeschreibung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Prüfung</th>
<th>Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169459</td>
<td>CFD-Praktikum mit OpenFOAM</td>
<td>3 SWS</td>
<td>Deutsch</td>
<td>Praktikum (P)</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt
Praktikum zu Vorlesung Nr. 2169458: 'Numerische Simulation reagierender Zweiphasenströmungen'
Die Teilnehmerzahl ist beschränkt.
Termin/Ort der Veranstaltung:wird bekannt gegeben, siehe Institutshomepage

- Erfolgreiche Lösung der Übungsaufgaben
- Eine CD mit dem Kursmaterial wird an die Teilnehmer übergeben

Lehrinhalt:
- Einführung in Open Foam
- Gittergenerierung
- Randbedingungen
- Numerische Fehler
- Diskretisierungsverfahren
- Turbulenzmodelle
- 2-Phasenströmung - Spray
- 2-Phasenströmung - Volume of Fluid Methode

Voraussetzungen/Empfehlungen:
- Strömungslehre
- Vorlesung zur numerischen Strömungsmechanik
- Grundwissen in LINUX

Arbeitsaufwand:
- 5 Tage zu je 8 h = 40 h

Lernziele:
Die Studenten können:
- OpenFOAM anwenden
- Gitter in OpenFOAM generieren oder importieren
- Geeignete Randbedingungen bestimmen und definieren
- Numerische Fehler abschätzen und beurteilen
- Turbulenzmodelle bewerten und auswählen
- 2-Phasenströmungen mit geeigneten Modellen simulieren

Organisatorisches
Praktikum findet in Präsenz statt, sofern es die COVID-Inzidenzwerte zulassen.
Veranstaltung wird voraussichtlich auf das Sommersemester 2022 verschoben. Siehe Internetseite des Instituts und ILIAS.

Literaturhinweise
- Dokumentation zu Open Foam
- www.open foam.com/docs
Inhalt
Praktikum zu Vorlesung Nr. 2169458: ‘Numerische Simulation reagierender Zweiphasenströmungen’
Die Teilnehmerzahl ist beschränkt.
Termin/Ort der Veranstaltung: wird bekannt gegeben, siehe Institutshomepage

- Erfolgreiche Lösung der Übungsaufgaben
- Eine CD mit dem Kursmaterial wird an die Teilnehmer übergeben

Lehrinhalt:

- Einführung in Open Foam
- Gittergenerierung
- Randbedingungen
- Numerische Fehler
- Diskretisierungsverfahren
- Turbulenzmodelle
- 2-Phasenströmung - Spray
- 2-Phasenströmung - Volume of Fluid Methode

Voraussetzungen/Empfehlungen:

- Strömungslehre
- Vorlesung zur numerischen Strömungsmechanik
- Grundwissen in LINUX

Arbeitsaufwand:

- 5 Tage zu je 8 h = 40 h

Lernziele:

Die Studenten können:

- OpenFOAM anwenden
- Gitter in OpenFOAM generieren oder importieren
- Geeignete Randbedingungen bestimmen und definieren
- Numerische Fehler abschätzen und beurteilen
- Turbulenzmodelle bewerten und auswählen
- 2-Phasenströmungen mit geeigneten Modellen simulieren

Organisatorisches
Lehrveranstaltung wird voraussichtlich im Sommersemester 2022 stattfinden.
Der aktuelle Status (Termin/Ort) wird auf der ITS-homepage u. in ILIAS bekanntgegeben.

Literaturhinweise

- Dokumentation zu Open Foam
- www.openfoam.com/docs
3.33 Teilleistung: CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I [T-MACH-111550]

Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2133113</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102194</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>Kubach, Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I

Inhalt
Einleitung, Institutsvorstellung
Prinzip des Verbrennungsmotors
Charakteristische Kenngrößen
Bauteile
Kurbeltrieb
Brennstoffe
Ottomotorische Betriebsarten
Dieselmotorische Betriebsarten
Wasserstoffmotoren
Abgasemissionen

Organisatorisches
Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
3.34 Teilleistung: CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II [T-MACH-111560]

Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>5</th>
<th>Notenskala</th>
<th>Drittelnoten</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

SS 2022 | 2134151 | CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II | 3 SWS | Vorlesung / Übung (VÜ) | | Koch |

Prüfungsveranstaltungen

WS 21/22 | 76-T-MACH-104609 | CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II | Kubach, Koch |

Legende: 🖥 Online, 🧱 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 Minuten, keine Hilfsmittel

Voraussetzungen
keine

Empfehlungen
Grundlagen des Verbrennungsmotors II hilfreich

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe II
2134151, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt
3.35 Teilleistung: Computational Intelligence [T-MACH-105314]

Verantwortung: apl. Prof. Dr. Ralf Mikut
Dr. Ines Reinartz
apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4

Notenskala Drittelnoten

Turnus Jedes Wintersemester

Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Modul</th>
<th>SWS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2105016</td>
<td>Computational Intelligence</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Mikut, Reischl, Reinartz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfungstyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>Mikut</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105314</td>
<td>Computational Intelligence</td>
<td>Mikut</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Computational Intelligence
2105016, WS 21/22, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen, Deep Learning) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.

Content:
- Begriff Computational Intelligence, Anwendungsgebiete und -beispiele
- Fuzzy Logik: Fuzzy-Mengen; Fuzzifizierung und Zugehörigkeitsfunktionen; Inferenz: T-Normen und -Konormen, Operatoren, Prämissenauswertung, Aktivierung, Akkumulation; Defuzzifizierung, Reglerstrukturen für Fuzzy-Regler
- Künstliche Neuronale Netze: Biologie neuronaler Netze, Neuronen, Multi-Layer-Perceptrons, Radiale-Basis-Funktionen, Kohonen-Karten, Lernverfahren (Backpropagation, Levenberg-Marquardt)
- Evolutionäre Algorithmen: Basisalgorithmus, Genetische Algorithmen und Evolutionssstrategien, Evolutionärer Algorithmus GLEAM, Einbindung lokaler Suchverfahren, Memetische Algorithmen, Anwendungsbeispiele
- Deep Learning

Lernziele:
Die Studierenden können die grundlegenden Methoden der Computational Intelligence (Fuzzy-Logik, Künstliche Neuronale Netze, Evolutionäre Algorithmen, Deep Learning) zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen sowohl die wichtigsten mathematischen Methoden als auch den Transfer zu praktischen Anwendungsfällen.
Literaturhinweise
Kroll, A. Computational Intelligence: Eine Einführung in Probleme, Methoden und technische Anwendungen Oldenbourg Verlag, 2013
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe; 2008 (PDF frei im Internet)
3.36 Teilleistung: Data Driven Engineering 1: Machine Learning for Dynamical Systems [T-MACH-111193]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem/Nr.</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2169556</td>
<td>Data Driven Engineering 1: Machine Learning for Dynamical Systems</td>
<td>2 SWS</td>
<td>Ates, Bauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem/Nr.</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-111193</td>
<td>Data Driven Engineering 1: Machine Learning for Dynamical Systems</td>
<td>Ates</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76T-MACH-111193</td>
<td>Data Driven Engineering 1: Machine Learning for Dynamical Systems</td>
<td>Ates</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, 30 Minuten

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Driven Engineering 1: Machine Learning for Dynamical Systems

2169556, WS 21/22, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen](#)
Inhalt

Inhalte:
1. Introduction to Data Driven Engineering
2. Basics of Learning
3. Analysis of Static Datasets I: Classification and Regression
4. Analysis of Static Datasets II: Clustering and Dimensionality Reduction
5. Deep Learning for Dynamical Systems
6. Sequence Modeling
7. Generative Modeling
8. Machine Learning Control
9. Emerging Concepts and the Outlook
10. Project Sessions

Veranstaltungsart:
Vorlesung: 45 min; Übung: 45 min

Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 42 h

Lernziele:
Teilnehmer erlangen die Fähigkeiten:

• unterschiedliche Methoden des Lernens zu unterscheiden (information, similarity, probability, error-based) und entsprechend geeignete Strategien und Algorithmen auszuwählen,
• mit große Datensätze zu arbeiten, mit Qualitätsprobleme in Rohdaten umzugehen und die Daten für die weitere Verarbeitung vorzubereiten,
• das Vorgehen von ML Algorithmen zu erklären,
• unterschiedliche Methoden zur Analyse gleichbleibender Datensätze zu bewerten und anzuwenden,
• Methoden für große dynamische Systeme mittels Deep Learning zu analysieren und auszuwerten,
• ein ML Projekt von Anfang bis Ende zu planen und durchzuführen,
• auf ML basierende Lösungen für vorliegende Probleme zu erstellen und anwendungsrelevante Ingenieursprobleme mit ML zu lösen.

Leistungskontrolle:
Mündliche Prüfung: 30 min

Empfehlungen:
Für die erfolgreiche Teilnahme an der Vorlesung sind Grundlagen der Höheren Mathematik und Programmierkenntnisse entsprechend eines Bachelorabschlusses im Maschinenbau vorausgesetzt. Es wird empfohlen, die Vorlesung in Kombination mit der Vorlesung „Data Driven Engineering 2: Advanced Topics“ zu wählen.

Organisatorisches
siehe auch Internetseite des Instituts
Vorlesung wird in Präsenz angeboten, sofern die COVID-Inzidenzwerte es zulassen.

Literaturhinweise
Lecture notes
3.37 Teilleistung: Data Driven Engineering 2: Advanced Topics [T-MACH-111373]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer

Einrichtung: KIT-Fakultät für Maschinenbau

KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Notenskala
- Drittelnoten

Turnus
- Jedes Sommersemester

Dauer
- 1 Sem.

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2170486</td>
<td>Data Driven Engineering 2</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-111373</td>
<td>Data Driven Engineering 2: Advanced Topics</td>
<td>Ates</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-111373</td>
<td>Data Driven Engineering 2</td>
<td>Ates</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
- Mündliche Prüfung, 30 min

Voraussetzungen
- keine

Empfehlungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Data Driven Engineering 2

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>2170486, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Vorlesung (V) / 🗣️</td>
</tr>
</tbody>
</table>

Präsenz
In diesem Kurs tauchen wir in die Details der neuesten Anwendungen im Data Driven Engineering im Rahmen des Maschinellen Lernens (ML) ein. Aufbauend auf den Fähigkeiten, die im Kurs "Data Driven Engineering 1: Machine Learning for Dynamical Systems" entwickelt wurden, lernen die Studenten komplexe Modellarchitekturen durch verschiedene "Themen" kennen, mit dem Ziel, einen tieferen Hintergrund und die Fähigkeit zu vermitteln, durch die jüngsten Entwicklungen auf diesem Gebiet zu navigieren.

Inhalte:

1. Introduction to the lecture and project workflow
2. Data-driven image processing for fluid mechanics
3. Dynamic Mode Decomposition and coordinate transformations
4. Modelling of transport phenomena with neural networks
5. State space models
6. Integration of genetic algorithms with machine learning
7. ML-Augmented Experiment Design and Machine Learning Control
8. Project presentations

Veranstaltungsart:

Vorlesung: 45 min; Übung: 45 min
Projektabarbeit: 90 min

Arbeitsaufwand:

Präsenzzzeit: 21 h
Selbststudium: 42 h

Lernziele:

Teilnehmer erlangen die Fähigkeiten:

- die zugrundeliegende Mathematik von ML-Algorithmen zu erklären,
- datengetriebene Methoden auf offene technische Probleme zuzuschneiden,
- Herausforderungen für komplexe, hybride Architekturen zu bewältigen,
- verschiedene Architekturen für spezialisierte Bereiche wie Strömungsvisualisierung, Transportphänomene oder Design von Experimenten beschreiben und anwenden,
- Muster zu extrahieren und sie mit der Physik des Problems für dynamische Datensätze zu korrelieren,
- durch die neuesten Entwicklungen auf dem Gebiet zu navigieren,
- Forschungsprojekte in Gruppen zu planen und durchzuführen.

Mündliche Prüfung: 30 min

Empfehlungen:

3.38 Teilleistung: Datenanalyse für Ingenieure [T-MACH-105694]

Verantwortung: Stefan Meisenbacher
apl. Prof. Dr. Ralf Mikut
apl. Prof. Dr. Markus Reischl

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2106014</th>
<th>Datenanalyse für Ingenieure</th>
<th>3 SWS</th>
<th>Vorlesung / Übung (VÜ) / §3</th>
<th>Mikut, Reischl, Meisenbacher</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105694 | Datenanalyse für Ingenieure | Mikut |
| SS 2022 | 76-T-MACH-105694 | Datenanalyse für Ingenieure | Mikut, Reischl |

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (Dauer: 1h)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung / Übung (VÜ)

Datenanalyse für Ingenieure
2106014, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Datenanalyse für Ingenieure
2106014, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lerninhalten:

- Einführung und Motivation
- Begriffe und Definitionen (Arten von mehrdimensionalen Merkmalen - Zeitreihen und Bilder, Einteilung Problemstellungen)
- Einsatzszenario: Problemformulierungen, Merkmalsextraktion, -bewertung, -selektion und -transformation, Distanzmaße, Bayes-Klassifikation, Support-Vektor-Maschinen, Entscheidungsbäume, Cluster-Verfahren, Regression, Validierung
- 14tägige Rechnerübungen und Anwendungen (Software-Übung mit SciXMiner): Import von Daten, Verschiedene Benchmarkdatensätze, Steuerung Handprothese, Energieprognose
- 2 SWS Vorlesungen, 1 SWS Übung

Lernziele:

Literaturhinweise
Vorlesungsunterlagen (ILIAS)
Mikut, R.: Data Mining in der Medizin und Medizintechnik. Universitätsverlag Karlsruhe.
2008 (PDF frei im Internet)
3.39 Teilleistung: Didaktik und Methodik [T-GEISTSOZ-108354]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Leistungspunkt</th>
<th>Leistungspunkte</th>
<th>Prüfungsverantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>5012102</td>
<td>Didaktik und Methodik</td>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012152 Lehramt</td>
<td>VL Didaktik und Methodik (LA M.Ed. M3)</td>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012187 Lehramt</td>
<td>VL Didaktik und Methodik der MINT-Fächer und des Sports (LA M.Ed. M3)</td>
<td>2 SWS</td>
<td>Vorlesung (V) /</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Leistungspunkt</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7400124</td>
<td>Didaktik und Methodik</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, x Abgesagt

Voraussetzungen

keine

Empfehlungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Didaktik und Methodik

5012102, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Lernziele

Ziel der Veranstaltung ist, die Studierenden in grundsätzliche Aspekte der Didaktik und Methodik im Lehren und Lernen einzuführen. Die Studierenden sollen aufgrund der rezipierenden und aktiven Beschäftigung mit den gegebenen Themen nachfolgend in der Lage sein, wesentliche Aspekte des Themas zu erkennen und einzuordnen sowie aufgrund der innerhalb der Veranstaltung gewonnenen Erkenntnisse und Anwendungserfahrungen in einfacher Weise wissenschaftlich nutzbar zu machen: zum einen bei der eigenständigen Erstellung wissenschaftlicher (Kurz-) Texte und deren kritischer Kommentierung, zum anderen im Rahmen von auf der Vorlesung aufbauenden, spezifischeren Veranstaltungen (Fachdidaktik, Technikdidaktik).

Inhalte

Literatur

Organisatorisches

Anmeldung und weitere Informationen ab 01.04.2022 unter https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
Inhalt

Lernziele:
Die Studierenden

- erwerben Einsichten und Kenntnisse der allgemeinen Unterrichtslehre bezogen auf den aktuellen Lehrplan, welcher auf dem Konzept des erziehenden Unterrichts beruht.
- sollen Grundverhältnisse der Allgemeinen Didaktik kennen wie deren Grundbegriffe verstehen und ferner in die Grundprobleme der Unterrichtsmethodik eingeführt werden.

Voraussetzung für ECTS-Nachweis (Erfolgskontrolle):
Klausur

Literaturhinweise
Arnold, K.H. u.a. (Hg.): Handbuch Unterricht, Bad Heilbrunn 2009

Inhalt

Lernziele:
Das Modul (Vorlesung und Begleitseminar) orientiert sich an den KMK-Standards für die Lehrer*innenbildung und den darin formulierten Kompetenzbereichen.

Fachliche Ziele:

Überfachliche Ziele:
Die Studierenden können die wissenschaftliche Perspektivenvielfalt zu einem persönlichen Handlungskonzept synthetisieren. Sie können wissenschaftliche von professionstheoretischen Betrachtungsweisen der Institution Schule differenzieren und für eine persönliche Haltung in Bezug auf Schule fruchtbar machen.

Voraussetzung für ECTS-Nachweis (Erfolgskontrolle): Schriftliche Modulprüfung im Umfang von 90 Minuten, die sich auf Inhalte der Vorlesung bezieht. Prüfungstermin ist i.d.R. in der vorletzten Woche der Vorlesungszeit, Ort und Zeit wie Vorlesung. (Hinweis: Bitte belegen Sie im eigenen Interesse die Vorlesung und das Begleit-Seminar in demselben Semester und bei demselben Dozierenden.)

Organisatorisches
aufzeichnungsfähiger Hörsaal wird benötigt (http://www.webcast.kit.edu/369.php)
Literaturhinweise
Literaturliste: s. Ilias

Auf Ilias ist als pdf-Material insbesondere folgendes Buch als Grundlage für die verschiedenen Fachdidaktiken hinterlegt:
3.40 Teilleistung: Differentialgleichungen - Klausur [T-MATH-103323]

Verantwortung: PD Dr. Volker Grimm
Prof. Dr. Marlis Hochbruck
PD Dr. Markus Neher

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101712 - Differentialgleichungen

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0132200</td>
<td>Höhere Mathematik 3 für die Fachrichtung Bauingenieurwesen (Differentialgleichungen)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Grimm</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0132300</td>
<td>Übungen zu 0132200</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Grimm</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>01015866090800808_HM3_Bau-Ing.</td>
<td>Differentialgleichungen - Klausur</td>
<td>Hochbruck</td>
</tr>
<tr>
<td>SS 2022</td>
<td>010157660908003808_HM3-Bau-Ing.</td>
<td>Differentialgleichungen - Klausur</td>
<td>Hochbruck</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Höhere Mathematik 3 für die Fachrichtung Bauingenieurwesen (Differentialgleichungen)
0132200, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

V Übungen zu 0132200
0132300, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
3.41 Teilleistung: Digitale Regelungen [T-MACH-105317]

Verantwortung: Dr.-Ing. Michael Knoop
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

WS 21/22 2137309 Digitale Regelungen 2 SWS Vorlesung (V) / 🗣 Knoop, Hauser

SS 2022 76-T-MACH-105317 Digitale Regelungen Stiller

Erfolgskontrolle(n)
Schriftliche Prüfung
60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Digitale Regelungen
2137309, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lehrinhalt:
1. Einführung in digitale Regelungen:
 - Motivation für die digitale Realisierung von Reglern
 - Grundstruktur digitaler Regelungen
 - Abtastung und Halteeinrichtung
2. Analyse und Entwurf im Zustandsraum: Zeitdiskretisierung kontinuierlicher Strecken,
 - Zustandsdifferenzengleichung,
 - Stabilität - Definition und Kriterien,
 - Zustandsreglerentwurf durch Eigenwertvorgabe, PI-Zustandsregler, Zustandsbeobachter, Separationstheorem, Strecken mit Totzeit, Entwurf auf endliche Einstellzeit
3. Analyse und Entwurf im Bildbereich der z-Transformation:
 - z-Transformation, Definition und Rechenregeln Beschreibung des Regelkreises im Bildbereich
 - Stabilitätskriterien im Bildbereich
 - Reglerentwurf mit dem Wurzelortskurvenverfahren
 - Übertragung zeitkontinuierlicher Regler in zeidiscrete Regler

Voraussetzungen:
Grundstudium mit abgeschlossenem Vorexamen, Grundvorlesung in Regelungstechnik

Lernziele:
Die Studierenden werden in die wesentlichen Methoden zur Beschreibung, Analyse und zum

Nachweis: schriftlich

Dauer: 60 Minuten
Hilfsmittel: keine
Arbeitsaufwand: 120 Stunden
Literaturhinweise

3.42 Teilleistung: Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie [T-MACH-110176]

Verantwortung: Dr.-Ing. Marc Wawerla
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2149701</th>
<th>Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🌐</th>
<th>Wawerla</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-110176</th>
<th>Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie</th>
<th>Wawerla</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110176</td>
<td>Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie</td>
<td>Wawerla</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🌐 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):
- Schriftliche Bearbeitung einer Fallstudie (Gewichtung 50%) und
- Präsentation der erarbeiteten Ergebnisse (ca. 10 Min.) mit anschließendem Kolloquium (ca. 30 Min.),
 (Gewichtung 50%)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Digitalisierung von der Produktion bis zum Kunden in der optischen Industrie
2149701, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Die Vorlesung beschäftigt sich mit der Digitalisierung entlang der gesamten Wertschöpfungskette, mit Schwerpunkt auf Produktion und Supply Chain. In diesem Zusammenhang werden Konzepte, Werkzeuge, Methoden, Technologien und konkrete Anwendungen in der Industrie vorgestellt. Darüber hinaus erhalten Studierende die Möglichkeit, einen Einblick in die Digitalisierungsreise eines deutschen Technologieunternehmens zu erhalten.

Die Vorlesungsschwerpunkte sind:
- Konzepte und Methoden wie disruptive Innovation und agiles Projektmanagement
- Überblick über die zur Verfügung stehenden Technologien
- Praktische Ansätze bei Innovationen
- Anwendungen in der Industrie
- Exkursion zu ZEISS

Lernziele:
Die Studierenden …
- sind fähig, die vorgestellten Inhalte zu erläutern.
- sind in der Lage, die Eignung von Digitalisierungstechnologien in der optischen Industrie zu analysieren und zu bewerten.
- sind fähig, die Anwendbarkeit von Methoden wie disruptive Innovation und agiles Projektmanagement zu beurteilen.
- sind in der Lage, die praktischen Herausforderungen der Digitalisierung in der Industrie zu schätzen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Start: 22.10.2021

Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Die Bewerbung erfolgt über die Homepage des wbk (http://www.wbk.kit.edu/studium-und-lehre.php)

Aufgrund der begrenzten Teilnehmerzahl ist eine Voranmeldung erforderlich.

For organisational reasons, the number of participants for the course is limited. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/studium-und-lehre.php).

Due to the limited number of participants, advance registration is required.
3.43 Teilleistung: Digitaltechnik [T-ETIT-101918]

- **Verantwortung:** Prof. Dr.-Ing. Jürgen Becker
- **Einrichtung:** KIT-Fakultät für Elektrotechnik und Informationstechnik
- **Bestandteil von:** M-ETIT-102102 - Digitaltechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Lehrkolleg</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2311615</td>
<td>Digitaltechnik</td>
<td>3</td>
<td>Becker</td>
<td>Becker</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2311617</td>
<td>Übungen zu 2311615 Digitaltechnik</td>
<td>1</td>
<td>Höfer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Veranstaltungsart</th>
<th>Lehrkolleg</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7311615</td>
<td>Digitaltechnik</td>
<td>Becker</td>
<td>Becker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7311615</td>
<td>Digitaltechnik</td>
<td>Becker</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

keine
3.44 Teilleistung: Dimensionierung mit Numerik in der Produktentwicklung [T-MACH-108719]

Verantwortung: Prof. Dr. Eckart Schnack
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik

Lehreveranstaltungen

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: ,[Online], Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: 20 min)

Voraussetzungen
Keine

Anmerkungen
Das Vorlesungsskript wird über ILIAS bereitgestellt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Dimensionierung mit Numerik in der Produktentwicklung

<table>
<thead>
<tr>
<th>Uhrzeit</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Dimensionierung mit Numerik in der Produktentwicklung</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Schnack</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Organisatorisches
Beginn ab 11.11.2021

Literaturhinweise
Vorlesungsskript
3.45 Teilleistung: Dimensionierung mit Verbundwerkstoffen [T-MACH-108721]

Verantwortung: Prof. Dr. Eckart Schnack
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-108721</td>
<td>Dimensionierung mit Verbundwerkstoffen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108721</td>
<td>Dimensionierung mit Verbundwerkstoffen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
Keine

Anmerkungen
Das Vorlesungsskript wird über ILIAS bereitgestellt.
3.46 Teilleistung: Dynamik [T-BGU-103379]

Verantwortung: Prof. Dr.-Ing. Thomas Seelig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101747 - Dynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 6200301</td>
<td>Dynamik</td>
</tr>
<tr>
<td>WS 21/22 6200302</td>
<td>Übungen zu Dynamik</td>
</tr>
<tr>
<td>WS 21/22 6200303</td>
<td>Tutorien zu Dynamik</td>
</tr>
<tr>
<td>WS 21/22 8233103379</td>
<td>Dynamik</td>
</tr>
<tr>
<td>SS 2022 8233103379</td>
<td>Dynamik</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 100 min.

Voraussetzungen
Die Prüfungsvorleistung Dynamik (T-BGU-111041) muss bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-111041 - Prüfungsvorleistung Dynamik muss erfolgreich abgeschlossen worden sein.

Empfehlungen
keine

Anmerkungen
keine
3.47 Teilleistung: Dynamik des Kfz-Antriebsstrangs [T-MACH-105226]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Sprache</th>
<th>Ort</th>
<th>Prüfung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2163111</td>
<td>Vorlesung (V)</td>
<td>Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Präsenz/Online gemischt</td>
<td>Fidlin</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2163112</td>
<td>Übung (Ü)</td>
<td>Übungen zu Dynamik des Kfz-Antriebsstrangs</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Präsenz</td>
<td>Fidlin, Luo</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstyp</th>
<th>Veranstaltungsbezeichnung</th>
<th>Ort</th>
<th>Prüfung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105226</td>
<td>Vorlesung (V)</td>
<td>Dynamik vom Kfz-Antriebsstrang</td>
<td>Präsenz</td>
<td>Fidlin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105226</td>
<td>Vorlesung (V)</td>
<td>Dynamik vom Kfz-Antriebsstrang</td>
<td>Präsenz</td>
<td>Fidlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 Min.

Voraussetzungen
keine

Empfehlungen
Antriebssystemtechnik A: FahrzeugantriebssystemeMaschinendynamikTechnische Schwingungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Dynamik des Kfz-Antriebsstrangs
2163111, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
- Hauptkomponenten eines KFZ-Antriebsstrangs und ihre Modelle
- Typische Fahrmanöver
- Problembezogene Modelle für einzelne Fahrsituationen
- Gesamtsystem: Betrachtung und Optimierung vom Antriebsstrang in Bezug auf dynamisches Verhalten

Literaturhinweise
- Pfeiffer F., Mechanical System Dynamics, Springer, 2008

V Übungen zu Dynamik des Kfz-Antriebsstrangs
2163112, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt
Übung des Vorlesungsstoffs
3.48 Teilleistung: Einführung in die Berufspädagogik [T-GEISTSOZ-100990]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100612 - Berufspädagogische Grundlagen
 M-GEISTSOZ-104484 - Orientierungsprüfung Berufspädagogik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>5012101</th>
<th>Einführung in die Berufspädagogik (IPBSc, IPI, PädBA, eWF)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
</table>
| Prüfungsveranstaltungen

| WS 21/22 | 7412101 | Einführung in die Berufspädagogik | Schwarz |

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Berufspädagogik (IPBSc, IPI, PädBA, eWF)
5012101, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Anmeldung und aktuelle Informationen ab 1.10. unter https://ilias.studium.kit.edu

Organisatorisches
Anmeldung und aktuelle Informationen ab 1.10. unter https://ilias.studium.kit.edu
3.49 Teilleistung: Einführung in die Didaktik der politischen Bildung (fachdidaktische Veranstaltung) [T-GEISTSOZ-103018]

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-101577 - Grundlagen der Gemeinschaftskunde

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
Die Lehrveranstaltungen für diese Teilleistung werden in Kooperation mit der Pädagogischen Hochschule Karlsruhe angeboten, Informationen dazu sind auf der Website der KIT-Fakultät für Geistes- und Sozialwissenschaften zu finden unter https://www.geistsoz.kit.edu/ingenieurpaedagogik.php
3.50 Teilleistung: Einführung in die Finite-Elemente-Methode [T-MACH-105320]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Vortrag (V)</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2162282</td>
<td>Einführung in die Finite-Elemente-Methode</td>
<td>2 SWS</td>
<td>Langhoff, Böhlke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Klausurzulassung: bestandene Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330)

Voraussetzungen

Das Bestehen der Studienleistung "Übungen zu Einführung in die Finite-Elemente-Methode" (T-MACH-110330) ist Klausurvoraussetzung.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Anmerkungen

Kenntnisse aus den Vorlesungen "Kontinuumsmechanik der Festkörper und Fluide" und "Mathematische Methoden der Kontinuumsmechanik" und den jeweils begleitenden Übungsveranstaltungen werden vorausgesetzt

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Finite-Elemente-Methode
2162282, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Einführung und Motivation, Elemente der Tensorrechnung
- Diskrete FEM: Stab- und Federsysteme
- Formulierungen eines Randwertproblems (1D)
- Approximationsansätze in der FEM
- FEM für skalare und vektorwertige Feldprobleme
- Lösungsverfahren für lineare Gleichungssysteme
Literaturhinweise

- Fish, J., Belytschko, T.: A First Course in Finite Elements, Wiley 2007
3.51 Teilleistung: Einführung in die internationalen Beziehungen [T-GEISTSOZ-103017]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

Die Lehrveranstaltungen für diese Teilleistung werden in Kooperation mit der Pädagogischen Hochschule Karlsruhe angeboten, Informationen dazu sind auf der Website der KIT-Fakultät für Geistes- und Sozialwissenschaften zu finden unter https://www.geistsoz.kit.edu/ingenieurpaedagogik.php
3.52 Teilleistung: Einführung in die Kernenergie [T-MACH-105525]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart	Prüfungsleistung mündlich	Leistungspunkte	4	Notenskala	Drittelnoten	Turnus	Jedes Wintersemester	Version	1

Lehrveranstaltungen
WS 21/22 2189903 Einführung in die Kernenergie 2 SWS Vorlesung (V) / 🖥 Cheng

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105525 Einführung in die Kernenergie Cheng
SS 2022 76-T-MACH-105525 Einführung in die Kernenergie Cheng

Legende: 🖥 Online, ⏯ Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Kernenergie
2189903, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Nukleare Energieerzeugung
2. Grundlagen der Reaktorphysik
3. Reaktortypen und Struktur
4. Reaktorsicherheit und Wärmeabfuhr
5. Kerntechnische Werkstoffe
6. Brennstoffkreislauf und Abfallbehandlung
7. Strahlenschutz
8. Wirtschaftlichkeit
9. Übungen mit Kernkraftwerkssimulation
3.53 Teilleistung: Einführung in die Kulturgeschichte der Technik [T-GEISTSOZ-101186]

Verantwortung: Prof. Dr. Marcus Popplow
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-105138 - Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik)
Voraussetzung für: T-GEISTSOZ-109227 - Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>5012018</th>
<th>Einführung in die Kulturgeschichte der Technik</th>
<th>2 SWS</th>
<th>Proseminar (PS)</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>7400087</th>
<th>Einführung in die Kulturgeschichte der Technik</th>
<th>Popplow</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an der Veranstaltung "Einführung in die Kulturgeschichte der Technik", d.h. im Bestehen der Studienleistungen, die in der Veranstaltung in Form von Hausaufgaben und/oder Referaten zu erbringen sind. Im Verlauf der Veranstaltung sind zwei solcher Leistungen zu erbringen.

Voraussetzungen

Die Studienleistungen "Orientierung Geschichte" und "Geisteswissenschaftliche Arbeitstechniken" bzw. "Geschichtswissenschaftliche Arbeitstechniken"

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-GEISTSOZ-101182 - Orientierung Geschichte muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Kulturgeschichte der Technik
5012018, SS 2022, 2 SWS, Im Studierendenportal anzeigen

Inhalt

Für die Studienleistung im Modul GdG ist gefordert: a) Einsendungen von knappen Kommentaren zu den zu lesenden Texten, b) in einer Seminarsitzung ein kurzer Input für die Diskussion eines der Texte inkl. Einleitung der Diskussion mit zwei bis drei eigenen Fragen zum Text.
Literaturhinweise

3.54 Teilleistung: Einführung in die Mechatronik [T-MACH-100535]

Verantwortung: Moritz Böhland
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen
WS 21/22 2105011 Einführung in die Mechatronik 3 SWS Vorlesung (V) / 📚
Reischl, Böhland

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-100535 Einführung in die Mechatronik Reischl
SS 2022 76-T-MACH-100535 Einführung in die Mechatronik Reischl

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 2h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Mechatronik
2105011, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Lerninhalt:

- Einleitung
- Aufbau mechatronischer Systeme
- Mathematische Behandlung mechatronischer Systeme
- Sensorik und Aktonik
- Messwerterfassung und –interpretation
- Modellierung mechatronischer Systeme
- Steuerung und Regelung
- Informationsverarbeitung

Lernziele:
Der Studierende kennt die fachspezifischen Herausforderungen in der interdisziplinären Zusammenarbeit im Rahmen der Mechatronik.
Er ist in der Lage Ursprung, Notwendigkeit und methodische Umsetzung dieser interdisziplinären Zusammenarbeit zu erläutern und kann deren wesentliche Schwierigkeiten benennen, sowie die Besonderheiten der Entwicklung mechatronischer Produkte aus entwicklungsmethodischer Sicht erläutern.
Der Studierende hat grundlegende Kenntnisse zu Grundlagen der Modellbildung mechanischer, pneumatischer, hydraulischer und elektrischer Teilsysteme, sowie geeigneter Optimierungsstrategien.
Der Studierende kennt den Unterschied des Systembegriffs in der Mechatronik im Vergleich zu rein maschinenbaulichen Systemen.

Literaturhinweise
3.55 Teilleistung: Einführung in die Mehrkörperdynamik [T-MACH-105209]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

| SS 2022 | 2162235 | Einführung in die Mehrkörperdynamik | 3 SWS | Vorlesung (V) / 🧩 | Römer |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105209 | Einführung in die Mehrkörperdynamik | Seemann |
| SS 2022 | 76-T-MACH-105209 | Einführung in die Mehrkörperdynamik | Seemann |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 180 min.

Voraussetzungen
keine

Empfehlungen
Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Einführung in die Mehrkörperdynamik
2162235, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Mehrkörpersysteme und ihre technische Bedeutung, Kinematik des einzelnen starren Körpers, Drehmatrizen, Winkelgeschwindigkeiten, Ableitungen in verschiedenen Bezugssystemen, Relativmechanik, holonome und nichtholonome Bindungsgleichungen für geschlossene kinematische Ketten, Newton-Eulersche Gleichungen, Prinzip von d'Alembert, Prinzip der virtuellen Leistung, Lagrangesche Gleichungen, Kanescher Formalismus, Struktur der Bewegungsungleichungen

Literaturhinweise
Wittenburg, J.: Dynamics of Systems of Rigid Bodies, Teubner Verlag, 1977
Kane, T.: Dynamics of rigid bodies.
3.56 Teilleistung: Einführung in die Numerische Strömungsmechanik [T-MACH-110362]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2154533</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110362</td>
<td>Einführung in die Numerische Strömungsmechanik</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 90Min

Voraussetzungen
Das Bestehen der Studienleistung "Übungen zu Einführung in die Numerische Strömungsmechanik" (T-MACH-111033) ist Klausurvorleistung.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-111033 - Übungen zu Einführung in die Numerische Strömungsmechanik muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Numerische Strömungsmechanik
2154533, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Online

Inhalt

- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen: Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM: Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertewerkzeuge, Auswertung in python;
- Einführung in einen forschungsorientierten Strömung löser für turbulente Strömungen (DNS mit Incompact3d), Simulationsaufbau, statistische Auswertung und Analyse turbulenter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum.

Organisatorisches
Die Kenntnis der Vorlesungsinhalte "Kontinuumsmechanik der Festkörper und Fluide" sowie "Mathematische Methoden der Kontinuumsmechanik" wird vorausgesetzt.
Literaturhinweise
Wird in der Vorlesung bekannt gegeben.
3.57 Teilleistung: Einführung in die numerische Strömungstechnik [T-MACH-105515]

Verantwortung: Dr. Balazs Pritz
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
Studienleistung

Leistungspunkte
4

Notenskala
best./nicht best.

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Praktikumslehrvertreter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2157444</td>
<td>Einführung in die numerische Strömungstechnik</td>
<td>2 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Praktikumslehrvertreter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105515</td>
<td>Einführung in die numerische Strömungstechnik</td>
<td>Pritz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105515</td>
<td>Einführung in die numerische Strömungstechnik</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Praktikumschein

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die numerische Strömungstechnik
2157444, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz

Inhalt

Inhalt:
1. Kurze Einführung in Linux
2. Geometrierestellung und Netzgenerierung mit ICEMCFD
3. Datenvisualisierung und -auswertung der Berechnungsergebnisse mit Tecplot
4. Handhabung des Strömungslösers SPARC
5. Selbständiger Berechnung: ebene Platte
6. Einführung in die zeitliche Simulation: Zylinderumströmung

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden

Lernziele:
Die Studierenden

- kennen die drei Komponenten von CFD: Preprocessing, Processing, Postprocessing,
- werden in der Lage sein, einfache Geometrien erstellen und vernetzen zu können,
- können eine komplette Simulation aufsetzen, durchrechnen und auswerten,
- kennen die Möglichkeiten von Auswertung der Ergebnisse und Strömungsvisualisierung,
- wissen, wie Strömungssituationen analysiert werden können.

Literaturhinweise
Praktikumsskript
3.58 Teilleistung: Einführung in die Politikwissenschaft [T-GEISTSOZ-103016]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: KiT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-101577 - Grundlagen der Gemeinschaftskunde

Prüfungsveranstaltungen

| SS 2022 | 7400377 | Einführung in die Politikwissenschaft |

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

Die Lehrveranstaltungen für diese Teilleistung werden in Kooperation mit der Pädagogischen Hochschule Karlsruhe angeboten, Informationen dazu sind auf der Website der KiT-Fakultät für Geistes- und Sozialwissenschaften zu finden unter https://www.geistsoz.kit.edu/ingenieurpaedagogik.php
3.59 Teilleistung: Einführung in die Politische Geschichte [T-GEISTSOZ-101185]

Verantwortung: Prof. Dr. Marcus Popplow

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-105138 - Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik)

Voraussetzung für: T-GEISTSOZ-109227 - Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 5012015 Einführung in die Politische Geschichte 2 SWS Proseminar (PS) Kunze

Prüfungsveranstaltungen

SS 2022 7400086 Politikgeschichte, Politische Geschichte oder Geschichte des Politischen? Guhl, Eisele

SS 2022 7400158 Einführung in die Politische Geschichte Popplow, Kunze

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an der Veranstaltung "Einführung in die Politische Geschichte", d.h. im Bestehen der Studienleistungen, die in der Veranstaltung in Form von Hausaufgaben und/oder Referaten zu erbringen sind. Im Verlauf der Veranstaltung sind zwei solcher Leistungen zu erbringen.

Voraussetzungen

Die Studienleistungen "Orientierung Geschichte" und "Geisteswissenschaftliche Arbeitstechniken" bzw. "Geschichtswissenschaftliche Arbeitstechniken"

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-GEISTSOZ-101182 - Orientierung Geschichte muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung in die Politische Geschichte

5012015, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Literaturhinweise

- Dieter Nohlen, Florian Grotz (Hg.), Kleines Lexikon Der Politik, Bonn 2015 (Nachschlagewerk);
- Wolfgang Reinhard, Geschichte der Staatsgewalt. Eine vergleichende Verfassungsgeschichte Europas von den Anfängen bis zur Gegenwart, München 1999 u. ö. (Vertieffend europäische Kontextgeschichte);
- Barbara Wolbring, Neuere Geschichte studieren, Konstanz 2006 (Einführung in das Studium u. a. der Politikgeschichte);
3.60 Teilleistung: Einführung Sportwissenschaft [T-GEISTSOZ-103244]

Verantwortung: Dr. phil. Claudia Hildebrand

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft

Bestandteil von: M-GEISTSOZ-100922 - Einführung Sportwissenschaft

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5016100</td>
<td>Einführung Sportwissenschaft</td>
<td>2 SWS</td>
<td>Hildebrand, Woll</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016100</td>
<td>Einführung Sportwissenschaft</td>
<td>2 SWS</td>
<td>Hildebrand, Woll</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsvorlesungs-Code</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400060</td>
<td>Einführung Sportwissenschaft</td>
<td>Hildebrand, Woll</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400249</td>
<td>Einführung Sportwissenschaft</td>
<td>Hildebrand, Woll</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 90 Minuten über die Lehrinhalte der Vorlesung und des Proseminars nach § 4 Abs. 2 Nr. 1 SPO B.Sc. Sportwissenschaft 2015 sowie einer Studienleistung im Rahmen des Proseminars nach § 4 Abs. 3 SPO B.Sc. Sportwissenschaft 2015

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung Sportwissenschaft

5016100, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt

Lerninhalt:

Arbeitsaufwand:

1. Präsenzzeiten in V: 30 Stunden
2. Vor und Nachbereitung der V: 30 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 30 Stunden

Lernziele:

Inhalt
Lerninhalt:

Arbeitsaufwand:
Präsenzzeiten in V: 30 Stunden
Vor und Nachbereitung der V: 30 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 30 Stunden

Lernziele:
3.61 Teilleistung: Elektrische Energienetze [T-ETIT-100830]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100572 - Elektrische Energienetze

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 6

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Studienmodule</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2307371</td>
<td>Elektrische Energienetze</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️ Leibfried</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2307373</td>
<td>Übungen zu 2307371 Elektrische Energienetze</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣️ Leibfried, Geis-Schroer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienmodule</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7307371</td>
<td>Elektrische Energienetze</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7307371</td>
<td>Elektrische Energienetze</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛡️ Präsenz/Online gemischt, 🗣️ Präsenz, ☑️ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten.

Voraussetzungen

keine
3.62 Teilleistung: Elektrische Maschinen und Stromrichter [T-ETIT-101954]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102124 - Elektrische Maschinen und Stromrichter

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Leistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2306387</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Hiller</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2306389</td>
<td>Übung zu 2306387 Elektrische Maschinen und Stromrichter</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7306307</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>Hiller</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7306307</td>
<td>Elektrische Maschinen und Stromrichter</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Keine
3.63 Teilleistung: Elektroenergiesysteme [T-ETIT-101923]

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102156 - Elektroenergiesysteme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungsnummer</th>
<th>Lehrveranstaltungsbeschreibung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2307391</td>
<td>Elektroenergiesysteme</td>
<td>2</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2307393</td>
<td>Übungen zu 2307391 Elektroenergiesysteme</td>
<td>1</td>
<td>Steinle</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungsnummer</th>
<th>Lehrveranstaltungsbeschreibung</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7307391</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7307391</td>
<td>Elektroenergiesysteme</td>
<td>Leibfried</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung im Umfang von 120 Minuten über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
3.64 Teilleistung: Elektronische Schaltungen [T-ETIT-109318]

Verantwortung: Prof. Dr.-Ing. Ahmet Cagri Ulusoy
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104465 - Elektronische Schaltungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 2308655</td>
<td>Elektronische Schaltungen</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Ulusoy</td>
<td></td>
</tr>
<tr>
<td>SS 2022 2308657</td>
<td>Übungen zu 2312655 Elektronische Schaltungen</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Ulusoy</td>
<td></td>
</tr>
<tr>
<td>SS 2022 2308658</td>
<td>Tutorien zu 2312655 Elektronische Schaltungen</td>
<td>SWS</td>
<td>Zusatzübung (ZÜ) / 📚</td>
<td>Ulusoy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7308655</td>
<td>Elektronische Schaltungen</td>
<td>Ulusoy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022 7308655</td>
<td>Elektronische Schaltungen</td>
<td>Ulusoy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 📚 Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ✗ Abgesagt

Empfehlungen
Der erfolgreiche Abschluss von LV „Lineare elektrische Netze“ wird dringend empfohlen, da das Modul auf dem Stoff und den Vorkenntnissen der genannten Lehrveranstaltung aufbaut.
3.65 Teilleistung: Elektronische Schaltungen - Workshop [T-ETIT-109138]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Verantwortung:** Prof. Dr.-Ing. Thomas Zwick
- **Einrichtung:** KIT-Fakultät für Elektrotechnik und Informationstechnik
- **Bestandteil von:** M-ETIT-104465 - Elektronische Schaltungen

Lehrveranstaltungen

| SS 2022 | 2308450 | Elektronische Schaltungen - Workshop | 1 SWS | Praktikum (P) / 🗣 | Zwick |

Prüfungsveranstaltungen

| SS 2022 | 7308450-1 | Elektronische Schaltungen - Workshop | Zwick, Ulusoy |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

keine

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
3.66 Teilleistung: Elektronische Systeme und EMV [T-ETIT-100723]

Verantwortung: Dr. Martin Sack
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100410 - Elektronische Systeme und EMV

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 3
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 2307378</td>
<td>Elektronische Systeme und EMV 2 SWS Vorlesung (V) / 🗣 Sack</td>
</tr>
<tr>
<td>WS 21/22 7307378</td>
<td>Elektronische Systeme und EMV Sack</td>
</tr>
<tr>
<td>SS 2022 7307378</td>
<td>Elektronische Systeme und EMV Sack</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen
keine
3.67 Teilleistung: Elektrotechnik und Elektronik [T-ETIT-109820]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104801 - Elektrotechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Leistung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2306339</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>4</td>
<td>Vorlesung (V) / 🕵️ Becker</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2306340</td>
<td>Übung zu 2306339 Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>2</td>
<td>Übung (Ü) / 🕵️ Becker, Mitarbeiter*innen</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7306351</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>Becker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7306351</td>
<td>Elektrotechnik und Elektronik für Maschinenbauingenieure</td>
<td>Becker</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕵️ Präsenz/Online gemischt, 🕵️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle findet im Rahmen einer schriftlichen Prüfung statt, Dauer 3 Stunden.

Voraussetzungen

keine

Anmerkungen

Die Prüfung findet in deutscher Sprache statt.

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
3.68 Teilleistung: Elektrotechnisches Grundlagenpraktikum [T-ETIT-101943]

Verantwortung: Dr.-Ing. Armin Teltschik
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102113 - Elektrotechnisches Grundlagenpraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung mündlich</td>
<td>6</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2301084</td>
<td>Elektrotechnisches Grundlagenpraktikum</td>
<td>4</td>
<td>Praktikum (P) / 🗣</td>
<td>Teltschik</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7301084</td>
<td>Elektrotechnisches Grundlagenpraktikum</td>
<td>Teltschik</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines mündlichen Abschlusskolloquiums von ca. 20 min Dauer sowie während des Praktikums durch Überprüfung der absolvierten Versuchs-Aufgaben.

Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit. Bei nicht bestehen ist das Praktikum komplett zu wiederholen.

Die Veranstaltung ist nicht benotet.

Voraussetzungen
keine

Empfehlungen
Die LV „Digitale Technik“ (23615) und „Elektronische Schaltungen“ (23655) müssen zuvor gehört worden sein bzw. anderweitig die Kenntnisse zum Inhalt der o.g. LV müssen erworben worden sein.

Anmerkungen
Für die Teilnahme am Abschlusskolloque müssen mindestens 8 der 9 Versuche erfolgreich absolviert werden. Die erfolgreich durchgeführten Versuche bilden zusammen mit dem Abschlusskolloquium eine Prüfungseinheit.

Bei nicht bestehen ist das Praktikum komplett zu wiederholen.
3.69 Teilleistung: Elemente und Systeme der Technischen Logistik [T-MACH-102159]

Verantwortung:
Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2117096 | Elemente und Systeme der Technischen Logistik | 3 SWS | Vorlesung / Übung (VÜ) | Mittwollen |

| Prüfungsveranstaltungen | WS 21/22 | 76-T-MACH-102159 | Elemente und Systeme der Technischen Logistik | Mittwollen |
| SS 2022 | 76-T-MACH-102159 | Elemente und Systeme der Technischen Logistik |

Legende: 📚 Online, 🗺 Präsenz/Online gemischt, 🗺 Präsenz, ☢ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20min) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elemente und Systeme der Technischen Logistik

| 2117096, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen |

Organisatorisches
Die Vorlesung wird ab SS 2022 in stark überarbeiteter Form angeboten werden.
Für die bisherige Veranstaltung werden weiterhin Prüfungen zu den üblichen Terminen angeboten.
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
siehe auch Homepage / ILIAS

This lecture will be offered in a deeply restructured form in SS 2022
Assessment for the former lecture is provided also in the future at the regular times
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulations.
look also at our homepage / ILIAS
3.70 Teilleistung: Elemente und Systeme der Technischen Logistik - Projekt [T-MACH-108946]

Verantwortung: Georg Fischer
Dr.-Ing. Martin Mittwollen

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2117097</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>SWS</td>
<td>Projekt (PRO) / X</td>
</tr>
<tr>
<td>Projekt (PRO)</td>
<td>76-T-MACH-108946</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>Mittwollen</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108946</td>
<td>Elemente und Systeme der Technischen Logistik - Projekt</td>
<td>Mittwollen</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☢ Abgesagt

Erfolgskontrolle(n)
Präsentation des bearbeiteten Projekts und Verteidigung (30min) nach §4, Abs. 2, Nr. 3 SPO

Voraussetzungen
T-MACH-102159 (Elemente und Systeme der Technischen Logistik) muss begonnen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-102159 - Elemente und Systeme der Technischen Logistik muss begonnen worden sein.

Empfehlungen
Es werden inhaltliche Kenntnisse aus der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Elemente und Systeme der Technischen Logistik - Projekt
2117097, WS 21/22, SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Projekt (PRO)
Abgesagt

Organisatorisches
Das Projekt (als Ergänzung zur Vorlesung) wird ab SS 2022 in stark überarbeiteter Form angeboten werden.
Für die bisherige Veranstaltung werden weiterhin Prüfungen zu den üblichen Terminen angeboten.
Die Erfolgskontrolle erfolgt in Form einer mündlichen (20min.) Prüfung (nach §4 (2), 2 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.
siehe auch Homepage / ILIAS
This project (as complement to the lecture) will be offered in a deeply restructured form in SS 2022
Assessment for the former lecture is provided also in the future at the regular times
The assessment consists of an oral exam (20 min.) taking place in the recess period according to § 4 paragraph 2 Nr. 2 of the examination regulations.
look also at our homepage / ILIAS
3.71 Teilleistung: Energieeffiziente Intralogistiksysteme (mach und wiwi) [T-MACH-105151]

Verantwortung:
Dr.-Ing. Meike Kramer
Dr. Frank Schönung

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von:
- M-MACH-102618 - Schwerpunkt: Produktionstechnik
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2117500</th>
<th>Energieeffiziente Intralogistiksysteme (mach und wiwi)</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🖥</th>
<th>Kramer, Schönung</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105151</th>
<th>Energieeffiziente Intralogistiksysteme (mach und wiwi)</th>
<th>Kramer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105151</td>
<td>Energieeffiziente Intralogistiksysteme (mach und wiwi)</td>
<td>Kramer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (30 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Empfehlungen
Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik I“ (T-MACH-109919) wird empfohlen.

Anmerkungen
Bitte beachten Sie die Informationen auf der IFL Homepage der Lehrveranstaltung für evtl. Terminänderungen zu einer Blockveranstaltung und/oder einer Begrenzung der Teilnehmerzahl.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Energieeffiziente Intralogistiksysteme (mach und wiwi)
2117500, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
Der Besuch der Veranstaltung „Grundlagen der Technischen Logistik“ wird empfohlen.

Organisatorisches
Blockveranstaltung 2021/2022. Die Veranstaltung wird im Januar als Online Veranstaltung (Link wird im ILIAS Kurs bereitgestellt) stattfinden. Termine

- 12.01.2022: 16:00 - 18:00 Uhr
- 14.01.2022: 16:00 - 18:00 Uhr
- 17.01.2022: 16:00 - 19:00 Uhr
- 18.01.2022: 16:00 - 19:00 Uhr
- 21.01.2022: 16:00 - 19:00 Uhr
- 24.01.2022: 16:00 - 19:00 Uhr
- 26.01.2022: 16:00 - 19:00 Uhr
- 28.01.2022: 16:00 - 18:00 Uhr
- 31.01.2022: 16:00 - 18:00 Uhr (als Fragestunde)
Literaturhinweise
Keine.
3.72 Teilleistung: Energiesysteme I - Regenerative Energien [T-MACH-105408]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energiotechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energiotechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lernziel: Der Studierende beherrscht die Grundlagen für die Energieumwandlung mit "Erneuerbaren Energien“, vor allem durch die Sonne.

Präsenzzeit: 34 Stunden
Selbststudium: 146 Stunden
Mündliche Prüfung - als Wahlfach ca. 30 Minuten, in Kombination mit Energiesysteme-II oder anderen Vorlesungen aus dem Energiesektor als Hauptfach 1 Stunde

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.
Teilleistung: Entwicklung des hybriden Antriebsstranges [T-MACH-110817]

Verantwortung: Prof. Dr. Thomas Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4
Notenskala Drittelnoten
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 2134155 Entwicklung des hybriden Antriebsstranges 2 SWS Vorlesung (V) / 🧩 Koch, Doppelbauer

Prüfungsveranstaltungen
SS 2022 76-T-MACH-110817 Entwicklung des hybriden Antriebsstranges Koch

Erfolgskontrolle(n)
schriftliche Prüfung, 1 Stunde

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Entwicklung des hybriden Antriebsstranges
2134155, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
1. Einleitung und Zielsetzung
2. Alternative Antriebskonzepte
3. Grundlagen der Hybridantriebe
4. Grundlagen der elektrischen Komponenten von Hybridantrieben
5. Wechselwirkung bei der hybriden Antriebsstrangentwicklung
6. Gesamtsystemoptimierung
7. Gesamtsystembetrachtung
3.74 Teilleistung: Erzeugung elektrischer Energie [T-ETIT-101924]

Verantwortung: Dr.-Ing. Bernd Hoferer
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100407 - Erzeugung elektrischer Energie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2307356</td>
<td>Erzeugung elektrischer Energie</td>
<td>2</td>
<td>V</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7307356</td>
<td>Erzeugung elektrischer Energie</td>
<td>mündlich</td>
<td>Hoferer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7307356</td>
<td>Erzeugung elektrischer Energie</td>
<td>mündlich</td>
<td>Hoferer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten) über die ausgewählte Lehrveranstaltung.

Voraussetzungen

keine
3.75 Teilleistung: Experimentalphysik [T-PHYS-100278]

Verantwortung: apl. Prof. Dr. Bernd Pilawa
Prof. Dr. Thomas Schimmel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101682 - Grundlagen der Physik

<table>
<thead>
<tr>
<th>Prüfungsleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>schriftlich</td>
<td>16</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Periodenabschnitt</th>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>Studiengänge</th>
<th>Lehrveranstaltungszeit</th>
<th>Prüfaufgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>4040011</td>
<td>Experimentalphysik A für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>4040112</td>
<td>Übungen zur Experimentalphysik A für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, technische Volkswirtschaftslehre, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, technische Volkswirtschaftslehre, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4040021</td>
<td>Experimentalphysik B für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>4040122</td>
<td>Übungen zur Experimentalphysik B für die Studiengänge Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, Technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT, Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Periodenabschnitt</th>
<th>Prüfungsveranstaltungsnummer</th>
<th>Prüfungstitel</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7800001</td>
<td>Experimentalphysik</td>
<td>Schimmel</td>
</tr>
</tbody>
</table>
Teilleistung: Experimentalphysik [T-PHYS-100278]

| SS 2022 | 7800001 | Experimentalphysik | Schimmel |

Legende: 🖥 Online, 🎤 Präsenz/Online gemischt, 🎤 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel 180 min)

Voraussetzungen
Keine
3.76 Teilleistung: Experimentalphysik A [T-PHYS-103240]

Verantwortung: Prof. Dr. Thomas Schimmel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101684 - Experimentalphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>ECTS</th>
<th>Lehrveranstaltungscode</th>
<th>Umgangssprache</th>
<th>Lehrveranstaltungsleistung</th>
<th>Lehrveranstaltungstitel</th>
<th>Termin</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 4040011</td>
<td>4</td>
<td>Experimentalphysik für die Studiengänge Elektrotechnik, Chemie, Biologie, Chemische Biologie, Geodäsie und Geoinformatik, Angewandte Geowissenschaften, Geökologie, technische Volkswirtschaftslehre, Materialwissenschaften, Lehramt Chemie, NWT Lehramt, Lebensmittelchemie, Materialwissenschaft und Werkstofftechnik (MWT) und Diplom-Ingenieurpädagogik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Schimmel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22 4040012</td>
<td>1</td>
<td>Übungen zur Experimentalphysik A für Elektrotechnik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Schimmel, Wertz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>ECTS</th>
<th>Prüfungsveranstaltungscode</th>
<th>Umgangssprache</th>
<th>Prüfungsveranstaltungstitel</th>
<th>Prüfungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7800002</td>
<td></td>
<td>Experimentalphysik A</td>
<td></td>
<td>Schimmel</td>
<td></td>
</tr>
<tr>
<td>SS 2022 7800002</td>
<td></td>
<td>Experimentalphysik A</td>
<td></td>
<td>Schimmel</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 180 min)

Voraussetzungen
keine
3.77 Teilleistung: Experimentelles Schweißtechnisches Praktikum, in Gruppen [T-MACH-102099]

Verantwortung: Dr.-Ing. Stefan Dietrich

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2173560</th>
<th>Experimentelles schweißtechnisches Praktikum, in Gruppen</th>
<th>3 SWS</th>
<th>Praktikum (P)</th>
<th>Präsenz</th>
<th>Dietrich, Schulze</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-102099 | Experimentelles Schweißtechnisches Praktikum, in Gruppen | Dietrich |
| SS 2022 | 76-T-MACH-102099 | Experimentelles Schweißtechnisches Praktikum, in Gruppen | Heilmaier, Dietrich |

Legende: Online, Präsenz/Online gemischts, Präsenz, Abgesagt

Erfolgskontrolle(n)
Ausstellung eines Scheins nach Begutachtung des Praktikumsberichts.

Voraussetzungen
Hörerschein in Schweißtechnik (Die Teilnahme an der Veranstaltung Schweißtechnik I/II wird vorausgesetzt.).

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles schweißtechnisches Praktikum, in Gruppen
2173560, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lernziele:
Die Studierenden können gängige Schweißverfahren und deren Anwendbarkeit beim Fügen verschiedener metallischer Werkstoffe nennen. Die Studierenden können die verschiedenen Schweißverfahren hinsichtlich ihrer Vor- und Nachteile miteinander vergleichen. Die Studierenden haben selber mit verschiedenen Schweißverfahren geschweißt.

Voraussetzungen:
Hörerschein in Schweißtechnik I
Es ist festes Schuhwerk und lange Kleidung erforderlich!

Arbeitsaufwand:
Präsenzzeit: 31,5 Stunden
Vorbereitung: 8,5 Stunden
Praktikumsbericht: 80 Stunden

Organisatorisches

Literaturhinweise
wird im Praktikum ausgegeben
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Kurscode</th>
<th>ECTS</th>
<th>Modulhandbuch</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>2113807</td>
<td>2 SWS</td>
<td>Fachbetrieb</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Kurscode</th>
<th>Prüfungsleistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>76-T-MACH-105152</td>
<td>Vorlesung (V)</td>
<td>Unrau</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Fahreigenschaften von Kraftfahrzeugen I</td>
<td>76-T-MACH-105152</td>
<td>Vorlesung (V)</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

- **Prüfungsleistung mündlich**
 - Dauer: 30 bis 40 Minuten
 - Hilfsmittel: keine
 - Voraussetzungen: keine

Inhalt

1. Problemstellung: Regelkreis Fahrer - Fahrzeug - Umgebung (z.B. Koordinatensysteme, Schwingungsformen des Aufbaus und der Räder)

2. Simulationsmodelle: Erstellung von Bewegungsgleichungen (Methode nach D’Alembert, Methode nach Lagrange, Automatische Gleichungsgenerierer), Modell für Fahreigenschaften (Aufgabenstellung, Bewegungsgleichungen)

3. Reifenverhalten: Grundlagen, trockene, nasse und winterglatte Fahrbahn

Literaturhinweise

3.79 Teilleistung: Fahreigenschaften von Kraftfahrzeugen II [T-MACH-105153]

Verantwortung: Dr.-Ing. Hans-Joachim Unrau

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2114838</th>
<th>Fahreigenschaften von Kraftfahrzeugen II</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Unrau</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105153</th>
<th>Fahreigenschaften von Kraftfahrzeugen II</th>
<th>Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105153</td>
<td>Fahreigenschaften von Kraftfahrzeugen II</td>
<td>Unrau</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n) mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Fahreigenschaften von Kraftfahrzeugen II

2114838, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V) Präsenz

Inhalt

1. Fahrverhalten: Grundlagen, Stationäre Kreisfahrt, Lenkwinkelsprung, Einzelsinus, Doppelter Spurwechsel, Slalom, Seitenwindverhalten, Unebene Fahrbahn

2. Stabilitätsverhalten: Grundlagen, Stabilitätsbedingungen beim Einzelfahrzeug und beim Gespann

Lernziele:

Literaturhinweise

3.80 Teilleistung: Fahrzeugergonomie [T-MACH-108374]

Verantwortung: Prof. Dr.-Ing. Barbara Deml
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2110050</td>
<td>Fahrzeugergonomie</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣 Deml</td>
<td></td>
</tr>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-108374</td>
<td>Fahrzeugergonomie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108374</td>
<td>Fahrzeugergonomie</td>
<td>Deml</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 60 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugergonomie
2110050, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
- Grundlagen der physikalisch-körperbezogenen Ergonomie
- Grundlagen der kognitiven Ergonomie
- Theorien des Fahrverhaltens
- Schnittstellengestaltung
- Usability-Testing

Lernziele:

Organisatorisches
Die Vorlesung hat einen Arbeitsaufwand von 120 h (= 4 LP).
Schriftliche Klausur findet am 27.07.2022.

Literaturhinweise
Die Literaturliste wird in der Vorlesung ausgegeben. Die Folien zur Vorlesung stehen auf ILIAS zum Download zur Verfügung.
3.81 Teilleistung: Fahrzeugkomfort und -akustik I [T-MACH-105154]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen
WS 21/22 2113806 Fahrzeugkomfort und -akustik I 2 SWS Vorlesung (V) Gauterin
SS 2022 2114856 Vehicle Ride Comfort & Acoustics I 2 SWS Vorlesung (V) Gauterin

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105154 Fahrzeugkomfort und -akustik I Gauterin
SS 2022 76-T-MACH-105154 Fahrzeugkomfort und -akustik I Gauterin

Legende: 📱 Online, 🛋 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich
Dauer: 30 bis 40 Minuten
Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics I T-MACH-102206 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugkomfort und -akustik I
2113806, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Excursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analyseren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2114856] kombiniert werden.
Can not be combined with lecture [2114856]
Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt

Vehicle Ride Comfort & Acoustics I
2114856, SS 2022, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt
1. Wahrnehmung von Geräuschen und Schwingungen
2. Grundlagen Akustik und Schwingungen
3. Werkzeuge und Verfahren zur Messung, Berechnung, Simulation und Analyse von Schall und Schwingungen

Eine Exkursion zu dem NVH-Bereich (Noise, Vibration & Harshness) eines Fahrzeugherstellers oder Zulieferers gibt einen Einblick in Ziele, Methoden und Vorgehensweisen der Fahrzeugentwicklung.

Lernziele:
Die Studierenden wissen, was Geräusche und Schwingungen sind, wie sie entstehen und wirken, welche Anforderungen seitens Fahrzeugnutzern und der Öffentlichkeit existieren, welche Komponenten des Fahrzeugs in welcher Weise an Geräusch- und Schwingungsphänomenen beteiligt sind und wie sie verbessert werden können. Sie sind in der Lage, unterschiedliche Werkzeuge und Verfahren einzusetzen, um die Zusammenhänge analysieren und beurteilen zu können. Sie sind befähigt, das Fahrwerk hinsichtlich Fahrzeugkomfort und -akustik unter Berücksichtigung der Zielkonflikte zu entwickeln.

Organisatorisches
Kann nicht mit der Veranstaltung [2113806] kombiniert werden.
Can not be combined with lecture [2113806]
Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates:
see homepage of the institute.
Classroom attendance depends on the development of the pandemic situation.

Literaturhinweise
2. Russel C. Hibbeler, Technische Mechanik 3, Dynamik, Pearson Studium, München, 2006

Das Skript wird zu jeder Vorlesung zur Verfügung gestellt
3.82 Teilleistung: Fahrzeugkomfort und -akustik II [T-MACH-105155]

Verantwortung: Prof. Dr. Frank Gauterin
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrform</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2114825</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2114857</td>
<td>Vehicle Ride Comfort & Acoustics II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105155</td>
<td>Fahrzeugkomfort und -akustik II</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündlich

Dauer: 30 bis 40 Minuten

Hilfsmittel: keine

Voraussetzungen
Kann nicht mit der Teilleistung Vehicle Ride Comfort & Acoustics II T-MACH-102205 kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Veranstaltungstitel</th>
<th>Veranstaltungscode</th>
<th>Sprache</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrzeugkomfort und -akustik II</td>
<td>2114825, SS 2022, 2 SWS</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Vorlesung (V) Präsenz
Inhalt
1. Zusammenfassung der Grundlagen Akustik und Schwingungen
2. Die Bedeutung von Fahrbahn, Radungleichförmigkeiten, Federn, Dämpfern, Bremsen, Lager und Buchsen, Fahrwerksskinematik, Antriebsmaschinen und Antriebsstrang für den akustischen und mechanischen Fahrkomfort:
 - Phänomene
 - Einflussparameter
 - Bauformen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik
3. Geräuschemission von Kraftfahrzeugen
 - Geräuschbelastung
 - Schallquellen und Einflussparameter
 - gesetzliche Auflagen
 - Komponenten- und Systemoptimierung
 - Zielkonflikte
 - Entwicklungsmethodik

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114857] kombiniert werden.
Can not be combined with lecture [2114857]
Je nach Pandemie Lage wird evtl. kurzfristig auf "Online Veranstaltung" geändert.

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.

Vehicle Ride Comfort & Acoustics II
2114857, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Organisatorisches
Genaue Termine entnehmen Sie bitte der Institushomepage.
Kann nicht mit der Veranstaltung [2114825] kombiniert werden.
Scheduled dates:
see homepage of the institute.
Can not be combined with lecture [2114825].
Classroom attendance depends on the development of the pandemic situation

Literaturhinweise
Das Skript wird zu jeder Vorlesung zur Verfügung gestellt.
The script will be supplied in the lectures.
3.83 Teilleistung: Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe [T-MACH-105237]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
<th>Erfolgskontrolle(n)</th>
<th>Voraussetzungen</th>
<th>Empfehlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2113102 Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe 2 SWS Vorlesung (V) / 🧩 Henning</td>
<td>WS 21/22 76-T-MACH-105237 Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe Henning</td>
<td>Prüfungsleistung schriftlich; Dauer ca. 90 min</td>
<td>keine</td>
<td>keine</td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-105237 Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe Henning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Fahrzeugleichtbau - Strategien, Konzepte, Werkstoffe 2113102, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
<th>Vorlesung (V) Präsenz/Online gemischt</th>
</tr>
</thead>
</table>

Ingenieurradagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Inhalt
Leichtbaustategien
- Stoffleichtbau
- Formleichtbau
- Konzeptleichtbau
- Multi-Material-Design

Ingenieurtechnische Bauweisen
- Differentiatbauweise
- Integralbauweise
- Sandwichbauweise
- Modulbauweise
- Bionik

Karosseriebauweisen
- Schalenbauweise
- Space Frame
- Gitterrohrrahmen
- Monocoque

Metallische Leichtbauwerkstoffe
- Hoch- und Höchstfeste Stähle
- Aluminiumlegierungen
- Magnesiumlegierungen
- Titanlegierungen

Lernziele:
Sie können nachvollziehen, dass dies besonders bei anisotropen Werkstoffen, deren Eigenschaften maßgeblich vom Fertigungsprozess beeinflusst werden, für die industrielle Nutzung essentiell ist.
Die Studierenden kennen die gängigen Leichtbaustategien, Ingenieurtechnische Leichtbauweisen sowie die gängige Karosseriebauweise. Sie lernen die im Fahrzeugleichtbau verwendeten metallischen Leichtbauwerkstoffe kennen und können die Zusammenhänge aus verwendetem Werkstoff zur anzuwendenden Karosseriebauweise bilden.

Organisatorisches
Die erste Vorlesung des Semesters findet am 22.10.2021 um 12:00 Uhr zunächst online über Zoom statt - Den Zugangsslink und das entsprechende Passwort finden Sie im zugehörigen Ilias-Kurs. Über die weitere Handhabung der Vorlesung in Präsenz oder Online wird in Abstimmung mit den teilnehmenden Studierenden entschieden.

Literaturhinweise
3.84 Teilleistung: Fahrzeugmechatronik I [T-MACH-105156]

Verantwortung: Prof. Dr.-Ing. Dieter Ammon
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Erfolgskontrolle(n)
Prüfungen werden nicht mehr angeboten.

Voraussetzungen
keine

Anmerkungen
Die Vorlesung wurde zum WS 19/20 eingestellt.
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fahrzeugreifen- und Räderentwicklung für PKW

2114845, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

1. Die Rolle von Reifen und Rädern im Fahrzeugumfeld
2. Geometrische Verhältnisse von Reifen und Rad, Package, Tragfähigkeit und Betriebsfestigkeit, Lastenheftprozess
3. Mobilitätsstrategie: Reserverad, Notlaufsysteme und Pannensets
4. Projektmanagement: Kosten, Gewicht, Termine, Dokumentation
5. Reifenprüfungen und Reifeneigenschaften
6. Räderentwicklung im Spannungsfeld Design und Herstellungsprozess, Radprüfung
7. Reifendruck: Indirekt und direkt messende Systeme
8. Reifenbeurteilung subjektiv und objektiv

Lernziele:

Die Studierenden kennen die Wechselwirkungen von Reifen, Rädern und Fahrwerk. Sie haben einen Überblick über die Prozesse, die sich rund um die Reifen- und Räderentwicklung abspielen. Ihnen sind die physikalischen Zusammenhänge klar, die hierfür eine wesentliche Rolle spielen.

Organisatorisches

Voraussichtliche Termine, nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage.

Literaturhinweise

Manuskript zur Vorlesung
Manuscript to the lecture
3.86 Teilleistung: Fahrzeugsehen [T-MACH-105218]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

| SS 2022 | 2138340, Automotive Vision / Fahrzeugsehen | 3 SWS, Vorlesung (V) / 🕰 | Lauer |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105218 Fahrzeugsehen | Stiller, Lauer |
| SS 2022 | 76-T-MACH-105218 Fahrzeugsehen | Stiller, Lauer |

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Automotive Vision / Fahrzeugsehen
2138340, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

Lernziele:

Lehrinhalt:
1. Fahrerassistenzsysteme
2. Stereosehen
3. Merkmalspunkterfassung
4. Optischer Fluss/Tracking im Bild
5. Tracking und Zustandsschätzung
6. Selbstlokalisierung und Kartierung
7. Fahrererkennung
8. Verhaltenserkennung

Nachweis: Schriftlich 60 Min.
Arbeitsaufwand: 120 Stunden
3 TEILLEISTUNGEN

Teilleistung: Fahrzeugsehen [T-MACH-105218]

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.87 Teilleistung: Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung [T-MACH-105535]

Verantwortung: Prof. Dr.-Ing. Frank Henning
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2114053 | Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung | 2 SWS | Vorlesung (V) / 🧩 | Henning |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105535 | Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung | Henning |
| SS 2022 | 76-T-MACH-105535 | Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung | Henning |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗳 Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung 90 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V</th>
<th>Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung</th>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114053, SS 2022, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhalt
Physikalische Zusammenhänge der Faserverstärkung
- Paradoxa der FVW
Anwendungen und Beispiele
- Automobilbau
- Transportation
- Energie- und Bauwesen
- Sportgeräte und Hobby
Matrixwerkstoffe
- Aufgaben der Matrix im Faserverbundwerkstoff
- Grundlagen Kunststoffe
- Duromere
- Thermoplaste
Verstärkungfasern und ihre Eigenschaften
- Aufgaben im FVW, Einfluss der Fasern
- Glasfasern
- Kohlenstofffasern
- Aramidfasern
- Naturfasern
Halbzeuge/Prepregs
Verarbeitungsverfahren
Recycling von Verbundstoffen

Lernziele:

Organisatorisches
Die Vorlesung wird online stattfinden. Wenn die Corona-Verordnung und die Infektionslage es zulässt evtl. auch in Präsenz. Dies entscheidet sich zu Beginn des Semesters.

The lecture will be online. If the Corona regulations and the infection situation permit, possibly also in attendance. This will be decided at the beginning of the semester.

Literaturhinweise
Literatur Leichtbau II
[1-7]
3.88 Teilleistung: Fertigungstechnik [T-MACH-102105]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Dr.-Ing. Frederik Zanger

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungskennzahl</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lektor*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149657</td>
<td>Fertigungstechnik</td>
<td>6</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Schulze, Gerstenmeyer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungskennzahl</th>
<th>Veranstaltung</th>
<th>Lektor*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>Schulze</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102105</td>
<td>Fertigungstechnik</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Legende: 📱 Online, 🎤 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (180 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fertigungstechnik

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Sprache</th>
<th>Veranstaltungsart</th>
<th>Lektor*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2149657, WS 21/22</td>
<td>Deutsch</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt
Ziel der Vorlesung ist es, die Fertigungstechnik im Rahmen der Produktionstechnik einzuordnen, einen Überblick über die Verfahren der Fertigungstechnik zu geben und ein vertieftes Prozesswissen der gängigen Verfahren aufzubauen. Dazu werden im Rahmen der Vorlesung fertigungstechnische Grundlagen vermittelt und die Fertigungsverfahren entsprechend ihrer Hauptgruppen sowohl unter technischen als auch wirtschaftlichen Gesichtspunkten behandelt. Durch die Vermittlung von Themen wie Prozessketten in der Fertigung wird die Vorlesung abgerundet.

Die Themen im Einzelnen sind:

- Qualitätsregelung
- Umformen (Gießen, Kunststoff-technik, Sintern, additive Fertigungsverfahren)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung
- Prozessketten in der Fertigung

Eine Exkursion zu einem Industrieunternehmen gehört zum Angebot dieser Vorlesung.

Lernziele:
Die Studierenden ...

- sind fähig, die verschiedenen Fertigungsverfahren anzugeben und deren Funktionen zu erläutern.
- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der Hauptgruppen klassifizieren.
- sind in der Lage, für vorgegebene Verfahren auf Basis deren Eigenschaften eine Prozessauswahl durchzuführen.
- sind befähigt, Zusammenhänge einzelner Verfahren zu identifizieren, und können diese hinsichtlich ihrer Einsatzmöglichkeiten auswählen.
- können die Verfahren für gegebene Anwendungen unter technischen und wirtschaftlichen Gesichtspunkten beurteilen und eine spezifische Auswahl treffen.
- sind in der Lage, die Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:
Präsenzzzeit: 63 Stunden
Selbststudium: 177 Stunden

Organisatorisches
Start: 18.10.2021

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.89 Teilleistung: Festigkeitslehre [T-BGU-103378]

Verantwortung: Prof. Dr.-Ing. Thomas Seelig
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101746 - Festigkeitslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilnehmerleistungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsart</th>
<th>Leistungspunkt</th>
<th>Notenbereich</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200201</td>
<td>Festigkeitslehre</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Franke</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200202</td>
<td>Übungen zu Festigkeitslehre</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Valdes y Beck, Hille</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200203</td>
<td>Tutorien Technische Mechanik</td>
<td>SWS</td>
<td>Tutorium (Tu) / 📚</td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsart</th>
<th>Leistungspunkt</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8232103378</td>
<td>Festigkeitslehre</td>
<td></td>
<td>Seelig</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8232103378</td>
<td>Festigkeitslehre</td>
<td></td>
<td>Seelig, Betsch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 100 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.90 Teilleistung: Finanzierung und Rechnungswesen [T-WIWI-111595]

Verantwortung:
Dr. Torsten Luedecke
Prof. Dr. Martin Ruckes
Dr. Jan-Oliver Strych
Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Marcus Wouters

Einrichtung:
KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von:
M-WIWI-105769 - Finanzierung und Rechnungswesen

<table>
<thead>
<tr>
<th>Teilleistungssort</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2500002</th>
<th>Jahresabschluss und Bewertung</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Ruckes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2610026</td>
<td>Finanzierung und Rechnungswesen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Ruckes, Wouters</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 7900043 | Finanzierung und Rechnungswesen | Vorlesung (V) | Ruckes, Wouters |

Erfolgskontrolle(n)
Schriftliche Prüfung über die beiden Lehrveranstaltungen "Finanzierung und Rechnungswesen" sowie "Jahresabschluss und Bewertung". Die Prüfung wird jeweils zu Beginn der vorlesungsfreien Zeit angeboten. Wiederholungsprüfungen sind zu jedem ordentlichen Prüfungstermin möglich.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Finanzierung und Rechnungswesen
2610026, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Inhalt
Die Vorlesung behandelt die folgenden Themen:

- Einführung in die Finanzwirtschaft
- Bewertung von Anleihen
- Methoden der Investitionsentscheidung
- Bewertung von Aktien
- Portfoliotoheorie
- Grundlagen des externen Rechnungswesens
- Methodik des externen Rechnungswesens
- Grundlagen des internen Rechnungswesens
- Kostenartenrechnung
- Kostenstellenrechnung
- Kostenträgerrechnung
- Kennzahlen des Rechnungswesens

Lernziele: Studierende

- können Anleihen und generell Zahlungsströme bewerten,
- sind in der Lage, Aktien zu bewerten,
- können Investitionsentscheidungen treffen,
- können Portfolios analysieren,
- können Geschäftsvorfälle in der Bilanz und GuV darstellen,
- können Abschreibungen berechnen,
- können Vorräte bewerten,
- können Kosten analysieren,
- kennen Unterschiede zwischen externem und internem Rechnungswesen,
- können die Kostenstellenrechnung durchführen und
- können die Kostenträgerrechnung durchführen.
Literaturhinweise
Ausführliche Literaturhinweise werden in den Materialen zur Vorlesung gegeben.
3.91 Teilleistung: Fluidtechnik [T-MACH-102093]

Verantwortung: Prof. Dr.-Ing. Marcus Geimer
Felix Pult

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

| WS 21/22 | 2114093 | Fluidtechnik | 2 SWS | Vorlesung (V) / 🔄 | Geimer, Metzger |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-102093 | Fluidtechnik | Geimer |
| SS 2022 | 76-T-MACH-102093 | Fluidtechnik | Geimer |

Erfolgskontrolle(n)

Voraussetzungen

keine

Anmerkungen

Lernziele:

Der Studierende ist in der Lage:

- die physikalischen Prinzipien der Fluidtechnik anzuwenden und zu bewerten,
- gängige Komponenten zu nennen und deren Funktionsweisen zu erläutern,
- die Vor- und Nachteile unterschiedlicher Komponenten aufzuzeigen,
- Komponenten für einen gegeben Zweck zu dimensionieren
- sowie einfache Systeme zu berechnen.

Inhalt:

Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und Hydraulische Schaltungen behandelt.

Im Bereich der Pneumatik werden die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und Steuerungen behandelt.

Literatur:

Skriptum zur Vorlesung Fluidtechnik, über die Lernplattform ILIAS downloadbar.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Fluidtechnik

2114093, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt
Im Bereich der Hydrostatik werden die Themenkomplexe

- Druckflüssigkeiten,
- Pumpen und Motoren,
- Ventile,
- Zubehör und
- Hydraulische Schaltungen betrachtet.

Im Bereich der Pneumatik die Themenkomplexe

- Verdichter,
- Antriebe,
- Ventile und
- Steuerungen betrachtet.

- Präsenzzeit: 21 Stunden
- Selbststudium: 92 Stunden

Literaturhinweise
Skriptum zur Vorlesung Fluidtechnik
Institut für Fahrzeugsystemtechnik
downloadbar
3.92 Teilleistung: Gasdynamik [T-MACH-105533]

Verantwortung: Dr.-Ing. Davide Gatti
Dr. Jochen Kriegseis

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von:
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Notenskala
- Drittelnoten

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>V/Ü/SA</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2154200</td>
<td>2</td>
<td>V/Ü</td>
<td>Serpieri, Magagnato, Gatti</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>V/Ü/SA</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105533</td>
<td>2</td>
<td>V/Ü</td>
<td>Gatti, Serpieri, Magagnato</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung - 30 Minuten

Voraussetzungen
- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gasdynamik

2154200, WS 21/22, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

In dieser Lehrveranstaltung werden folgende Themen behandelt:

- Einführung in die Gasdynamik
- Numerische und experimentelle Beispiele
- Die Grundgleichungen in differentieller und integraler Form
- Stationäre Stromfadentheorie mit und ohne senkrechten Verdichtungsstoß
- Diskussion des Energiesatzes: Ruhewerte und kritische Werte
- Stromfadentheorie bei veränderlichem Querschnitt. Strömung in einer Lavaldüse
- Schräger Verdichtungsstoß und abgelöster Verdichtungsstoß
- Prandtl-Meyer Expansionsfächer
- Strömungen mit Reibung (Fanno Linie)
Literaturhinweise
Zierep, J.: Theoretische Gasdynamik, Braun Verlag, Karlsruhe. 1991
3.93 Teilleistung: Geologie im Bauwesen [T-BGU-103395]

Verantwortung: Prof. Dr. Philipp Blum
Prof. Dr. Jörg-Detlef Eckhardt
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101756 - Geologie im Bauwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6340101</td>
<td>Geologie im Bauwesen</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Blum, Eckhardt, Menberg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>8220_103395</td>
<td>Geologie im Bauwesen</td>
<td></td>
<td></td>
<td>Blum</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8220_103395</td>
<td>Geologie im Bauwesen</td>
<td></td>
<td></td>
<td>Blum, Eckhardt, Menberg</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliches Testat, 20 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.94 Teilleistung: Geotechnisches Ingenieurwesen [T-BGU-107465]

Verantwortung: Prof. Dr.-Ing. Hans Henning Stutz
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103698 - Geotechnisches Ingenieurwesen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala Drittelnoten</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200515</td>
<td>Grundlagen des Grundbaus</td>
<td>2 SWS Vorlesung (V) / 🛜</td>
<td>Stutz</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200516</td>
<td>Übungen zu Grundlagen des Grundbaus</td>
<td>2 SWS Übung (Ü) / 🛜</td>
<td>Gehring</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200517</td>
<td>Tutorium zu Grundlagen des Grundbaus</td>
<td>2 SWS Tutorium (Tu) / 🗣</td>
<td>N.N.</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200415</td>
<td>Grundlagen der Bodenmechanik</td>
<td>2 SWS Vorlesung (V) / 🛜</td>
<td>Stutz</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200416</td>
<td>Übungen zu Grundlagen der Bodenmechanik</td>
<td>2 SWS Übung (Ü) / 🗣</td>
<td>Stutz, N.N.</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200417</td>
<td>Tutorien zu Grundlagen der Bodenmechanik</td>
<td>2 SWS Tutorium (Tu) / 🗣</td>
<td>Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8235107465</td>
<td>Geotechnisches Ingenieurwesen</td>
<td></td>
<td>Stutz</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>8235107465</td>
<td>Geotechnisches Ingenieurwesen</td>
<td></td>
<td>Stutz</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🛜 Online, 🛜 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 150 min.

Voraussetzungen
keine

Empfehlungen
Die Bearbeitung von freiwilligen Studienarbeiten wird als Prüfungsvorbereitung dringend empfohlen.

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen des Grundbaus

- **6200515, WS 21/22, 2 SWS, Sprache: Deutsch**, Im Studierendenportal anzeigen

Literaturhinweise

Triantafyllidis, Th. (2011): Arbeitsblätter und Übungsblätter Grundbau

Grundlagen der Bodenmechanik

- **6200415, SS 2022, 2 SWS, Sprache: Deutsch**, Im Studierendenportal anzeigen

Literaturhinweise

Triantafyllidis, Th.: Arbeitsblätter und Übungsblätter Bodenmechanik
Gudehus, G (1981): Bodenmechanik, F. Enke
3.95 Teilleistung: Geschichtswissenschaftliche Arbeitstechniken [T-GEISTSOZ-109193]

Verantwortung: Prof. Dr. Marcus Popplow
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-105138 - Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik)
Voraussetzung für: T-GEISTSOZ-101185 - Einführung in die Politische Geschichte
T-GEISTSOZ-101186 - Einführung in die Kulturgeschichte der Technik
T-GEISTSOZ-109227 - Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012007</td>
<td>Geschichtswissenschaftliche Arbeitstechniken</td>
<td>2 SWS</td>
<td>Proseminar (PS)</td>
<td>1</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012018</td>
<td>Tutorium Geschichtswissenschaftliche Arbeitstechniken</td>
<td>SWS</td>
<td>Tutorium (Tu)</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400155</td>
<td>Fraunholz, Betz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an der Veranstaltung "Geschichtswissenschaftliche Arbeitstechniken", d. i. im Bestehen der Studienleistungen, die in Form von Hausaufgaben und/oder Referaten zu erbringen sind. Im Verlauf der Veranstaltung sind zwei solcher Leistungen zu erbringen.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Geschichtswissenschaftliche Arbeitstechniken

5012007, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt

Als Bestandteil der Studieneingangspanse des BA-Studiums Euklid vermittelt das Seminar grundlegende Arbeitstechniken und macht die Teilnehmer so mit dem Handwerkszeug des Historikers bekannt. Dabei gilt es, zunächst zu klären, was Geschichte eigentlich ist, und sich die Spezifika historischen Denkens und Arbeitens bewusst zu machen. Recherchetechniken zum Auffinden wissenschaftlicher Literatur werden ebenso vorgestellt und eingeübt, wie der Umgang mit historischen Quellen unterschiedlicher Provenienz. Ziel ist die Befähigung zum eigenständigen Verfassen erster kürzerer wissenschaftlicher Texte. Dies schließt die Vertrautheit mit unterschiedlichen Nachweissystemen ein. Die behandelten Themen werden in einem begleitenden Tutorium und ggfs. durch Exkursionen vertieft.

Die Studienleistung für eine erfolgreiche Teilnahme umfasst die regelmäßige Lektüre der über Illias zur Verfügung gestellten Texte, die Erledigung mehrerer kleiner Übungsaufgaben während des Semesters sowie die Anfertigung einer kurzen schriftlichen Hausarbeit im Umfang von etwa fünf Seiten in der vorlesungsfreien Zeit.
3.96 Teilleistung: Gewerke und Technik im schlüsselfertigen Hochbau [T-BGU-110821]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-105335 - Gewerke und Technik im schlüsselfertigen Hochbau

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200521</td>
<td>Gewerke und Technik im schlüsselfertigen Hochbau</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Denzer, Schneider</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>Dozent/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8235110821</td>
<td>Gewerke und Technik im schlüsselfertigen Hochbau</td>
<td>Haghsheno, Schneider</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8235110821</td>
<td>Gewerke und Technik im schlüsselfertigen Hochbau</td>
<td>Haghsheno, Schneider</td>
</tr>
</tbody>
</table>

Legende:
- Online
- Präsenz/Online gemischt
- Präsenz
- Abgesagt

Erfolgskontrolle(n)
schriftliches Testat, 45 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.97 Teilleistung: Gießereikunde [T-MACH-105157]

Verantwortung: Dr.-Ing. Christian Wilhelm

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

SS 2022 2174575 Gießereikunde 2 SWS Vorlesung (V) / 🧩 Wilhelm

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-105157 Gießereikunde Wilhelm
SS 2022 76-T-MACH-105157 Gießereikunde Wilhelm

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung; ca. 25 Minuten

Voraussetzungen
Werkstoffkunde I & II muss bestanden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Gießereikunde
2174575, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Form- und Gießverfahren
Erstarrung metall. Schmelzen
Gießbarkeit
Fe-Metallegierungen
Ne-Metallegierungen
Form- und Hilfsstoffe
Kernherstellung
Sandregenerierung
Gießgerechtes Konstruieren
Gieß- und Erstarrungssimulation
Arbeitsablauf in der Gießerei

Lernziele:
Die Studenten kennen die einzelnen Form- und Gießtechnischen Verfahren und können sie detailliert beschreiben. Sie kennen die Anwendungsgebiete der einzelnen Form- und Gießtechnischen Verfahren hinsichtlich Gussteilen und Metallen, deren Vor- und Nachteile sowie deren Anwendungsgrenzen und können diese detailliert beschreiben.
Die Studenten kennen die im Einsatz befindlichen Gusswerkstoffe und können die Vor- und Nachteile sowie das jeweilige Einsatzgebiet der Gussmaterialien detailliert beschreiben.
Die Studenten sind in der Lage, den Aufbau verlorender Formen, die eingesetzten Form- und Hilfsstoffe, die notwendigen Fertigungsverfahren, deren Einsatzschwerpunkte sowie formstoffbedingte Gussfehler detailliert zu beschreiben.
Die Studenten kennen die Grundlagen der Herstellung beliebiger Gussteile hinsichtlich o.a. Kriterien und können sie konkret beschreiben.

Voraussetzungen:
Pflicht: Werkstoffkunde I und II

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Gießereikunde beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (21 h) sowie Vor- und Nachbearbeitungszeit zuhause (99 h).

Organisatorisches
29.4.
13.5. und 20.5.
3.6. und 24.6.
8.7., 15.7., 22.7. und 29.7

Literaturhinweise
Literaturhinweise werden in der Vorlesung gegeben
Reference to literature, documentation and partial lecture notes given in lecture
3.98 Teilleistung: Globale Logistik [T-MACH-111003]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen
SS 2022 2149600 Globale Logistik 2 SWS Vorlesung (V) / 🛠 Furmans

Prüfungsveranstaltungen
SS 2022 76-T-MACH-105159 Globale Produktion und Logistik - Teil 2: Globale Logistik / Neu: Globale Logistik Furmans

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🔴 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Logistik
2149600, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt

Rahmenbedingungen des internationalen Handels
- Incoterms
- Zollabfertigung, Dokumente und Ausfuhrkontrolle

Internationaler Transport
- Seefracht, insbesondere Containertransport
- Luftfracht

Modellierung von Logistikketten
- SCOR-Modell
- Wertstromanalyse

Standortplanung in länderübergreifenden Netzwerken
- Anwendung des Warehouse-Location-Problems
- Transportplanung

Bestandsmanagement in globalen Lieferketten
- Lagerhaltungspolitiken
- Einfluss der Lieferzeit und Transportkosten auf das Bestandsmanagement

Medien:
Präsentationen, Tafelanschrieb

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lernziele:
Die Studierenden können:
- grundlegende Fragestellungen der Planung und des Betriebs von globalen Lieferketten einordnen und mit geeigneten Verfahren Planungen durchführen,
- Rahmenbedingungen und Besonderheiten von globalem Handel und Transport beschreiben und Gestaltungsmerkmale von Logistikketten in Bezug auf ihre Eignung bewerten.

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO. Die Prüfung wird jedes Sommersemester angeboten. Die Nachprüfung im Wintersemester wird nur für Wiederholer angeboten.

Literaturhinweise
Weiterführende Literatur:
- Arnold/Isermann/Kuhn/Tempelmeier. HandbuchLogistik, Springer Verlag, 2002 (Neuausgabe in Arbeit)
- Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
- Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
- Gudehus. Logistik, Springer Verlag, 2007
- Tempelmeier. Bestandsmanagement in SupplyChains, Books on Demand 2006
3.99 Teilleistung: Globale Produktion [T-MACH-110991]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Kurzbeschreibung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2149613</td>
<td>Globale Produktion</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Kurzbeschreibung</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 76-T-MACH-110991</td>
<td>Globale Produktion</td>
<td>Lanza</td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-110991</td>
<td>Globale Produktion</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
T-MACH-110337 - Globale Produktion und Logistik darf nicht begonnen sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110337 - Globale Produktion und Logistik darf nicht begonnen worden sein.

Empfehlungen
Teilnahme an "T-MACH-110981 - Übungen zu Globale Produktion" wird empfohlen, ist jedoch nicht obligatorisch.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Globale Produktion
2149613, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:

- Rahmenbedingungen und Einflussfaktoren globaler Produktion (Historische Entwicklung, Ziele, Chancen und Risiken)
- Framework zur Planung, zur Gestaltung und zum Management globaler Produktionsnetzwerke
- Produktionsstrategien für globale Produktionsnetzwerke
 - von der Unternehmens- zur Produktionsstrategie
 - Aufgaben der Produktionsstrategie (Produktportfolioanagement, Kreislaufwirtschaft, Fertigungstiefenplanung, produktionsgekoppelte Forschung und Entwicklung)
- Gestaltung globaler Produktionsnetzwerke
 - Idealtypische Netzwerkstrukturen
 - Planungsprozess zur Gestaltung der Netzwerkstruktur
 - Anpassung der Netzwerkstruktur
 - Standortwahl
 - Standortgerechte Produktionsanpassung
- Management globaler Produktionsnetzwerke
 - Koordination in globalen Produktionsnetzwerken
 - Beschaffungsprozess
 - Auftragsmanagement

- Trends im Hinblick auf die Planung, die Gestaltung und das Management globaler Produktionsnetzwerke

Lernziele:
Die Studierenden …

- können die Rahmenbedingungen und Einflussfaktoren globaler Produktion erläutern
- sind in der Lage, definierte Vorgehensweisen zur Standortauswahl anzuwenden und eine Standortentscheidung mit Hilfe unterschiedlicher Methoden zu bewerten
- sind befähigt, adäquate Gestaltungsmöglichkeiten zur standortgerechten Produktion und Produktkonstruktion fallspezifisch auszuwählen
- können die zentralen Elemente des Planungsvorgehens beim Aufbau eines neuen Produktionsstandortes darlegen
- sind befähigt, die Methoden zur Gestaltung und Auslegung globaler Produktionsnetzwerke auf unternehmensindividuelle Problemstellungen anzuwenden
- sind in der Lage, die Herausforderungen und Potentiale der Unternehmensbereiche Vertrieb, Beschaffung sowie Forschung und Entwicklung auf globaler Betrachtungsebene aufzuzeigen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Empfehlungen:
Kombination mit Globale Produktion und Logistik – Teil 2

Organisatorisches
Start: 18.10.2021
Vorleistungstermine montags 14:00 - 15:30 Uhr
Lectures on Mondays 14:00 - 15:30
Literaturhinweise
Medien
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt
empfohlene Sekundärliteratur:

Media
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)

recommended secondary literature:
3.100 Teilleistung: Globale Produktion und Logistik [T-MACH-110337]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Prof. Dr.-Ing. Gisela Lanza

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsfeld</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149613</td>
<td>Globale Produktion</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚 Lanza</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2149600</td>
<td>Globale Logistik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚 Furmans</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsfeld</th>
<th>Veranstaltungstitel</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110337</td>
<td>Globale Produktion und Logistik</td>
<td>Furmans, Lanza</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110337</td>
<td>Globale Produktion und Logistik</td>
<td>Furmans, Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (40 min)

Voraussetzungen

Die folgenden Teilleistungen dürfen nicht begonnen sein:

- Globale Produktion und Logistik - Teil 1: Globale Produktion [T-MACH-105158 oder T-MACH-108848]
- Globale Produktion und Logistik - Teil 2: Globale Logistik [T-MACH-105159]

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Globale Produktion

2149613, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Die Themen im Einzelnen sind:

- Rahmenbedingungen und Einflussfaktoren globaler Produktion (Historische Entwicklung, Ziele, Chancen und Risiken)
- Framework zur Planung, zur Gestaltung und zum Management globaler Produktionsnetzwerke
- Produktionsstrategien für globale Produktionsnetzwerke
 - von der Unternehmens- zur Produktionsstrategie
 - Aufgaben der Produktionsstrategie (Produktportfolio-Management, Kreislaufwirtschaft, Fertigungstiefenplanung, produktionsgekoppelte Forschung und Entwicklung)
- Gestaltung globaler Produktionsnetzwerke
 - Idealtypische Netzwerkstrukturen
 - Planungsprozess zur Gestaltung der Netzwerkstruktur
 - Anpassung der Netzwerkstruktur
 - Standortwahl
 - Standortgerechte Produktionsanpassung
- Management globaler Produktionsnetzwerke
 - Koordination in globalen Produktionsnetzwerken
 - Beschaffungsprozess
 - Auftragsmanagement
- Trends im Hinblick auf die Planung, die Gestaltung und das Management globaler Produktionsnetzwerke

Lernziele:
Die Studierenden …

- können die Rahmenbedingungen und Einflussfaktoren globaler Produktion erläutern
- sind in der Lage, definierte Vorgehensweisen zur Standortauswahl anzuwenden und eine Standortentscheidung mit Hilfe unterschiedlicher Methoden zu bewerten
- sind befähigt, adäquate Gestaltungsmöglichkeiten zur standortgerechten Produktion und Produktkonstruktion fallspezifisch auszuwählen
- können die zentralen Elemente des Planungsvorgehens beim Aufbau eines neuen Produktionsstandortes darlegen
- sind befähigt, die Methoden zur Gestaltung und Auslegung globaler Produktionsnetzwerke auf unternehmensindividuelle Problemstellungen anzuwenden
- sind in der Lage, die Herausforderungen und Potentiale der Unternehmensbereiche Vertrieb, Beschaffung sowie Forschung und Entwicklung auf globaler Betrachtungsebene aufzuzeigen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Empfehlungen:
Kombination mit Globale Produktion und Logistik – Teil 2

Organisatorisches
Start: 18.10.2021
Vorlesungstermine montags 14:00 - 15:30 Uhr
Lectures on Mondays 14:00 - 15:30
Literaturhinweise
Medien
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt
empfohlene Sekundärliteratur:

Media
Lecture notes will be provided in iliاس (https://ilias.studium.kit.edu/)
recommended secondary literature:

Globale Logistik
2149600, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Inhalt:
Rahmenbedingungen des internationalen Handels
 - Incoterms
 - Zollabfertigung, Dokumente und Ausfuhrkontrolle
Internationaler Transport
 - Seefracht, insbesondere Containertransport
 - Luftfracht
Modellierung von Logistikketten
 - SCOR-Modell
 - Wertstromanalyse
Standortplanung in länderübergreifenden Netzwerken
 - Anwendung des Warehouse-Location-Problems
 - Transportplanung
Bestandsmanagement in globalen Lieferketten
 - Lagerhaltungspolitiken
 - Einfluss der Lieferzeit und Transportkosten auf das Bestandsmanagement

Medien:
Präsentationen, Tafelanschrieb

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Lernziele:
Die Studierenden können:
 - grundlegende Fragestellungen der Planung und des Betriebs von globalen Lieferketten einordnen und mit geeigneten Verfahren Planungen durchführen,
 - Rahmenbedingungen und Besonderheiten von globalem Handel und Transport beschreiben und Gestaltungsmerkmale von Logistikketten in Bezug auf ihre Eignung bewerten.

Prüfung:
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 min.) nach § 4 Abs. 2 Nr. 1 SPO.
Die Prüfung wird jedes Sommersemester angeboten. Die Nachprüfung im Wintersemester wird nur für Wiederholer angeboten.

Literaturhinweise
Weiterführende Literatur:
 - Arnold/Isermann/Kuhn/Tempelmeier, HandbuchLogistik, Springer Verlag, 2002 (Neauflage in Arbeit)
 - Domschke. Logistik, Rundreisen und Touren, Oldenbourg Verlag, 1982
 - Domschke/Drexl. Logistik, Standorte, Oldenbourg Verlag, 1996
 - Gudehus. Logistik, Springer Verlag, 2007
 - Tempelmeier. Bestandsmanagement in SupplyChains, Books on Demand 2006
3.101 Teilleistung: Grundfach Basketball - Praxis [T-GEISTSOZ-100840]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 2
Notenskala: Drittelnoten
Version: 6

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltung</th>
<th>Ws</th>
<th>Praktische Übung (PÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017350</td>
<td>Grundfach Basketball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017351</td>
<td>Grundfach Basketball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017350</td>
<td>Grundfach Basketball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017351</td>
<td>Grundfach Basketball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017352</td>
<td>Grundfach Basketball II - B</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltung</th>
<th>Prüfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400231</td>
<td>Grundfach Basketball - Praxis</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400256</td>
<td>Grundfach Basketball - Praxis</td>
<td>Schlenker</td>
</tr>
</tbody>
</table>

Legende: Online, 🛥 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung" müssen erfolgreich abgeschlossen sein.
Die Anmeldung zu einer praktischen Prüfung in einer gewählten Sportart ist nur in Verbindung mit einer vorherigen Anmeldung zur passenden theoretischen Prüfung möglich.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundfach Basketball I
5017350, WS 21/22, SWS, Im Studierendenportal anzeigen
Praktische Übung (PÜ) Präsenz
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfugen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball

Grundfach Basketball II
5017351, WS 21/22, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theorethisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden.

Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluiieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt.

Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
Inhalt

Lerninhalte

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
3.102 Teilleistung: Grundfach Basketball - Theorie [T-GEISTSOZ-100842]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Drittelnoten</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Code</th>
<th>Kurs</th>
<th>SWS</th>
<th>Übung</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017350</td>
<td>Grundfach Basketball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Kurz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017351</td>
<td>Grundfach Basketball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Kurz</td>
</tr>
<tr>
<td>Sommersemester 22</td>
<td>5017350</td>
<td>Grundfach Basketball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Kurz</td>
</tr>
<tr>
<td>Sommersemester 22</td>
<td>5017351</td>
<td>Grundfach Basketball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ)</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Code</th>
<th>Kurs</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400230</td>
<td>Grundfach Basketball - Theorie</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400264</td>
<td>Grundfach Basketball - Theorie</td>
<td>Schlenker</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung" müssen erfolgreich abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundfach Basketball I
5017350, WS 21/22, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ) Präsenz
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theorethisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:

Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:

Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Basketball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
Inhalt

Lerninhalten

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Basketball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Basketball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Basketball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h

Vor- und Nachbereitungszeit: 20h

Prüfungsvorbereitung und Präsenzzzeit in der Prüfung: 20h

Lernziele

Theorie:
- Studierende
 - können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
 - sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
 - können theoretisches Wissen der Sportart Basketball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
- Studierende
 - verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Basketball, die sie selbständig weiterentwickeln können
 - entwickeln die technisch-taktischen Grundzüge im Basketball und können dies handlungs- und zielorientiert anwenden und anpassen
 - haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Basketball
3.103 Teilleistung: Grundfach Fußball - Praxis [T-GEISTSOZ-100847]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 5017380 Grundfach Fußball I - A SWS Praktische Übung (PÜ) / Blicker</td>
</tr>
<tr>
<td>WS 21/22 5017381 Grundfach Fußball II SWS Praktische Übung (PÜ) Blicker, Braun</td>
</tr>
<tr>
<td>WS 21/22 5017385 Grundfach Fußball I - B SWS Praktische Übung (PÜ) Blicker</td>
</tr>
<tr>
<td>SS 2022 5017380 Grundfach Fußball I SWS Praktische Übung (PÜ) Blicker, Braun</td>
</tr>
<tr>
<td>SS 2022 5017381 Grundfach Fußball II - A SWS Praktische Übung (PÜ) Blicker</td>
</tr>
<tr>
<td>SS 2022 5017382 Grundfach Fußball II - B SWS Praktische Übung (PÜ) Blicker</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 7400262 Grundfach Fußball - Praxis Blicker</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung müssen erfolgreich abgeschlossen sein.
Die Anmeldung zu einer praktischen Prüfung in einer gewählten Sportart ist nur in Verbindung mit einer vorherigen Anmeldung zur passenden theoretischen Prüfung möglich.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundfach Fußball I - A
5017380, WS 21/22, SWS, Im Studierendenportal anzeigen
Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrlkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrlkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball

Grundfach Fußball II
5017381, WS 21/22, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball

Grundfach Fußball I
5017380, SS 2022, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Online
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrlkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrlkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfugen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werdend. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball
3.104 Teilleistung: Grundfach Fußball - Theorie [T-GEISTSOZ-100846]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltungsform</th>
<th>Beginn</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017380</td>
<td>Grundfach Fußball I - A</td>
<td>SWS</td>
<td>5017380</td>
<td>Blicker</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017381</td>
<td>Grundfach Fußball II</td>
<td>SWS</td>
<td>5017381</td>
<td>Blicker, Braun</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017385</td>
<td>Grundfach Fußball I - B</td>
<td>SWS</td>
<td>5017385</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017380</td>
<td>Grundfach Fußball I</td>
<td>SWS</td>
<td>5017380</td>
<td>Blicker, Braun</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017381</td>
<td>Grundfach Fußball II - A</td>
<td>SWS</td>
<td>5017381</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017382</td>
<td>Grundfach Fußball II - B</td>
<td>SWS</td>
<td>5017382</td>
<td>Blicker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Veranstaltungsform</th>
<th>Beginn</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400332</td>
<td>Grundfach Fußball - Theorie</td>
<td>Blicker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400261</td>
<td>Grundfach Fußball - Theorie</td>
<td>Blicker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗤 Präsenz, ✗ Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung müssen erfolgreich abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundfach Fußball I - A

5017380, WS 21/22, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ) Präsenz
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszüüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball

Grundfach Fußball II
5017381, WS 21/22, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball

Grundfach Fußball II - A
5017381, SS 2022, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluiieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt.
Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende - entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende - verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball

Grundfach Fußball II - B
5017382, SS 2022, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt

Lerninhalte

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Fußball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Fußball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Fußball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Fußball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Fußball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Fußball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Fußball
3.105 Teilleistung: Grundfach Handball - Praxis [T-GEISTSOZ-100845]

Verantwortung: Dr. Valentin Futterer
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Koloid</th>
<th>Veranstaltung</th>
<th>Veranstaltungstyp</th>
<th>Ort</th>
<th>Lehrveranstaltungsangebot</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017370</td>
<td>Grundfach Handball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Futterer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017371</td>
<td>Grundfach Handball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Futterer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017370</td>
<td>Grundfach Handball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Futterer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017371</td>
<td>Grundfach Handball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Futterer</td>
</tr>
</tbody>
</table>

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Grundfach Handball I</th>
<th>Praktische Übung (PÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5017370, WS 21/22, SWS, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vertiefen

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball

Grundfach Handball II
5017371, WS 21/22, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball

Grundfach Handball I
5017370, SS 2022, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenszeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball

Grundfach Handball II
5017371, SS 2022, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
3 TEILLEISTUNGEN

Teilleistung: Grundfach Handball - Praxis [T-GEISTSOZ-100845]

Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiier und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren,
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball
3.106 Teilleistung: Grundfach Handball - Theorie [T-GEISTSOZ-100844]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Drittelnoten</td>
<td>3</td>
</tr>
</tbody>
</table>

Verantwortung:
Dr. Valentin Futterer

Einrichtung:
KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft

Bestandteil von:
M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 5017370 Grundfach Handball I SWS Praktische Übung (PÜ) / ➥ Futterer</td>
</tr>
<tr>
<td>WS 21/22 5017371 Grundfach Handball II SWS Praktische Übung (PÜ) / ➥ Futterer</td>
</tr>
<tr>
<td>SS 2022 5017370 Grundfach Handball I SWS Praktische Übung (PÜ) / ➥ Futterer</td>
</tr>
<tr>
<td>SS 2022 5017371 Grundfach Handball II SWS Praktische Übung (PÜ) / ➥ Futterer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7400051 Grundfach Handball - Theorie Futterer</td>
</tr>
<tr>
<td>SS 2022 7400259 Grundfach Handball - Theorie Futterer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, ➥ Präsenz, ✗ Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung" müssen erfolgreich abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Grundfach Handball I</th>
</tr>
</thead>
<tbody>
<tr>
<td>5017370, WS 21/22, SWS, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Praktische Übung (PÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiierten
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball

Grundfach Handball II
5017371, WS 21/22, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende - entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende - verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Handball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Handball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Handball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Handball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Handball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Handball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Handball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Handball
3.107 Teilleistung: Grundfach Volleyball - Praxis [T-GEISTSOZ-100841]

Verantwortung: Dr. Gunther Kurz
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Drittelnoten</td>
<td>5</td>
</tr>
</tbody>
</table>

Teilnehmeranforderungen

- LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung" müssen erfolgreich abgeschlossen sein.
- Die Anmeldung zu einer praktischen Prüfung in einer gewählten Sportart ist nur in Verbindung mit einer vorherigen Anmeldung zur passenden theoretischen Prüfung möglich.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundfach Volleyball I
5017360, WS 21/22, SWS, Praktische Übung (PÜ) / Präsenz

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungstyp</th>
<th>Veranstaltungsart</th>
<th>Veranstaltungsbeginn</th>
<th>Veranstaltungstitel</th>
<th>Veranstaltungskürzel</th>
<th>Sprachversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 5017360</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Scharpf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22 5017361</td>
<td>Grundfach Volleyball II - A</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Kurz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22 5017362</td>
<td>Grundfach Volleyball II - B</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Scharpf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022 5017360</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Kurz, Scharpf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022 5017361</td>
<td>Grundfach Volleyball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Scharpf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022 5017362</td>
<td>Grundfach Volleyball II - B</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Burchartz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022 5017365</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / Präsenz</td>
<td>Scharpf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Prüfungstitel</th>
<th>Sprachversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7400229</td>
<td>Grundfach Volleyball - Praxis</td>
<td>Kurz</td>
</tr>
<tr>
<td>SS 2022 7400260</td>
<td>Grundfach Volleyball - Praxis</td>
<td>Kurz</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt

Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball I
5017360, SS 2022, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball II
5017361, SS 2022, SWS, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalte

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball II - B
5017362, SS 2022, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenszeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfasst, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball I
5017365, SS 2022, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
3.108 Teilleistung: Grundfach Volleyball - Theorie [T-GEISTSOZ-100843]

Verantwortung: Dr. Gunther Kurz
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-101701 - Grundlagen Mannschaftssport

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Drittelnoten</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Veranstaltungsart</th>
<th>Lehrveranstaltungsart</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017360</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Scharpf</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017361</td>
<td>Grundfach Volleyball II - A</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Kurz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017362</td>
<td>Grundfach Volleyball II - B</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Scharpf</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017360</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Kurz, Scharpf</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017361</td>
<td>Grundfach Volleyball II</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Scharpf</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017362</td>
<td>Grundfach Volleyball II - B</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Burchartz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017365</td>
<td>Grundfach Volleyball I</td>
<td>SWS</td>
<td>Praktische Übung (PÜ) / 🗣</td>
<td>Scharpf</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>Veranstaltungsart</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400228</td>
<td>Grundfach Volleyball - Theorie</td>
<td>Kurz</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400266</td>
<td>Grundfach Volleyball - Theorie</td>
<td>Kurz</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
LV "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung müssen erfolgreich abgeschlossen sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Grundfach Volleyball I</th>
<th>5017360, WS 21/22, SWS, Im Studierendenportal anzeigen</th>
<th>Praktische Übung (PÜ)</th>
<th>Präsenz</th>
</tr>
</thead>
</table>
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden.

Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt.

Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball II - A
5017361, WS 21/22, SWS, Im Studierenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele
Theorie:
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
Inhalt
Lerninhalt
Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluiieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsentzeit in der Prüfung: 20h

Lernziele
Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfasst, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

<table>
<thead>
<tr>
<th>Grundfach Volleyball II</th>
<th>Praktische Übung (PÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5017361, SS 2022, SWS,</td>
<td>Präsenz</td>
</tr>
<tr>
<td>Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>
Inhalt
Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszüüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
Inhalt
Lerninhalte

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm ...) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzuentwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen
Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand
Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiiern,
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbstständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilf- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball

Grundfach Volleyball I
5017365, SS 2022, SWS, im Studierendenportal anzeigen

Praktische Übung (PÜ)
Präsenz
Inhalt

Lerninhalt

Theorie:
In dieser Lehrveranstaltung werden Fach- und Lehrkompetenzen im Volleyball vermittelt. Mithilfe unterschiedlicher Verfahren (Bewegungsanalyse, Bewegungskorrektur, uvm.) werden sportartspezifische Lehr- und Trainingsformen erfasst, bewertet und kommentiert. Hierdurch sollen Lernfortschritte initiert und gefördert werden. Unterschiedliche didaktisch Vermittlungskonzepte zur Gestaltung des Unterrichts oder Trainings werden im Volleyball diskutiert und erprobt, so dass die Studierenden die Möglichkeit erhalten diese in unterschiedlichen Handlungsfeldern zu erproben und zu evaluieren.

Praxis:
In dieser Lehrveranstaltung werden grundlegende sportmotorische Fähigkeiten und Fertigkeiten im Volleyball vermittelt, sportartspezifische Techniken eingeführt und taktische Grundzüge dargestellt. Im Fokus steht der Erwerb sportartspezifischer Fähigkeiten und Fertigkeiten um die Sportart auszuüben und selbst weiterzu entwickeln (Demonstration, Eigenrealisation) wie auch der Erwerb von Vermittlungskompetenzen, um den Unterricht und das Training in der Sportart anzuleiten.

Voraussetzungen

Erfolgreicher Abschluss der Übungen "Einführung Lehrkompetenz" und "Integrative Sportspielvermittlung".

Arbeitsaufwand

Präsenzzeit: 20h
Vor- und Nachbereitungszeit: 20h
Prüfungsvorbereitung und Präsenzzeit in der Prüfung: 20h

Lernziele

Theorie:
Studierende
- entwickeln Fach- und Lehrkompetenz im Volleyball
- können mithilfe unterschiedlicher Verfahren sportartspezifische Lern- und Trainingsformen erfassen, bewerten und kommentieren (Bewegungsanalyse, Bewegungskorrektur) und Lernschritte initiieren.
- sind in der Lage ihre didaktischen und sportmotorischen Fertigkeiten zur Gestaltung von Lernprozessen den spezifischen Handlungsfeldern anzupassen, umzusetzen und zu begründen
- können theoretisches Wissen der Sportart Volleyball in die praktische Umsetzung transferieren, Zusammenhänge herstellen und vermitteln

Praxis:
Studierende
- verfügen über grundlegende sportmotorische Fähigkeiten und Fertigkeiten in der gewählten Sportart Volleyball, die sie selbständig weiterentwickeln können
- entwickeln die technisch-taktischen Grundzüge im Volleyball und können dies handlungs- und zielorientiert anwenden und anpassen
- haben Kenntnisse über Hilfs- und Sicherheitsmaßnahmen (Unfallverhütung, etc.) in der gewählten Sportart Volleyball
3.109 Teilleistung: Grundlagen der Energietechnik [T-MACH-105220]

Verantwortung: Dr. Aurelian Florin Badea
Prof. Dr.-Ing. Xu Cheng

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2130927</th>
<th>Grundlagen der Energietechnik</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Cheng, Badea</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3190923</td>
<td>Fundamentals of Energy Technology</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Badea</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

WS 21/22	76-T-MACH-105220	Grundlagen der Energietechnik	Badea, Cheng
SS 2022	76-T-MACH-105220	Grundlagen der Energietechnik	Cheng, Badea
SS 2022	76-T-MACH-105220 Fundamentals of Energy Technology	Grundlagen der Energietechnik	Badea

Erfolgskontrolle(n)
schriftliche Prüfung, 90 Minuten

Voraussetzungen
keine

Grundlagen der Energietechnik
2130927, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Die Vorlesung umfasst folgende Themengebiete:

- Energiebedarf und Energiesituation
- Energiemischtypen und Energiemix
- Grundlagen. Thermodynamik relevant für den Energiesektor
- Konventionelle Fossil befeuerte Kraftwerke, inkl. GuD
- Kraft-Wärme-Kopplung
- Kernenergie
- Regenerative Energien: Wasserkraft, Windenergie, Solarenergie, andere Energiesysteme
- Energiebedarfsstrukturen. Grundlagen der Kostenrechnung / Optimierung
- Energiespeicher
- Transport von Energie
- Energierzeugung und Umwelt. Zukunft des Energiesektors
Inhalt

Die Vorlesung umfasst folgende Themengebiete:
- Energiearten
 - Thermodynamik relevant für den Energiesektor
 - Energiequellen: fossile Brennstoffe, Kernenergie, regenerative Energien
 - Energiebedarf, -versorgung, -reserven; Energiebedarfsstrukturen
 - Energieerzeugung und Umwelt
 - Energiewandlung
 - Prinzip thermisch/elektrischer Kraftwerke
 - Transport von Energie
 - Energiespeicher
 - Systemen zur Nutzung regenerativer Energiequellen
 - Grundlagen der Kostenrechnung / Optimierung
 - Zukunft des Energiesektors
3.110 Teilleistung: Grundlagen der Fahrzeugtechnik I [T-MACH-100092]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Dauer
1 Sem.

Sprache

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>WS 21/22</th>
<th>2113805</th>
<th>Grundlagen der Fahrzeugtechnik I</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Gauterin, Unrau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td>WS 21/22</td>
<td>76-T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td></td>
<td></td>
<td>Unrau, Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100092</td>
<td>Grundlagen der Fahrzeugtechnik I</td>
<td></td>
<td></td>
<td>Gauterin, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)
schriftlich

Dauer: 120 Minuten

Hilfsmittel: keine

Voraussetzungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik I
2113805, WS 21/22, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanische Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit der Veranstaltung [2113809] kombiniert werden.
Can not be combined with lecture [2113809].
Literaturhinweise

Automotive Engineering I
2113809, WS 21/22, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
1. Historie und Zukunft des Automobils
2. Fahrmechanik: Fahrwiderstände und Fahrleistungen, Mechanik der Längs- und Querkräfte, aktive und passive Sicherheit
3. Antriebssysteme: Verbrennungsmotor, hybride und elektrische Antriebssysteme
4. Kennungswandler: Kupplungen (z.B. Reibungskupplung, Viskokupplung), Getriebe (z.B. mechanisches Schaltgetriebe, Strömungsgetriebe)
5. Leistungsübertragung und -verteilung: Wellen, Wellengelenke, Differentiale

Lernziele:
Die Studierenden kennen die Bewegungen und die Kräfte am Fahrzeug und sind vertraut mit aktiver und passiver Sicherheit. Sie haben Kenntnisse über die Wirkungsweise von Motoren und alternativen Antrieben, über die notwendige Kennungswandlung zwischen Motor und Antriebsräder sowie über die Leistungsübertragung und -verteilung. Sie kennen die für den Antrieb notwendigen Bauteile und beherrschen die Grundlagen, um das komplexe System "Fahrzeug" analysieren, beurteilen und weiterentwickeln zu können.

Organisatorisches
Kann nicht mit LV Grundlagen der Fahrzeugtechnik I [2113805] kombiniert werden.
Can not be combined with lecture [2113805] Grundlagen der Fahrzeugtechnik I.

Literaturhinweise
3.111 Teilleistung: Grundlagen der Fahrzeugtechnik II [T-MACH-102117]

Verantwortung: Prof. Dr. Frank Gauterin
Dr.-Ing. Hans-Joachim Unrau

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 4
Notenskala Drittelnoten

Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen
SS 2022 2114835 Grundlagen der Fahrzeugtechnik II 2 SWS Vorlesung (V) / 🗣 Unrau
SS 2022 2114855 Automotive Engineering II 2 SWS Vorlesung (V) / 🧩 Gießler

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-102117 Grundlagen der Fahrzeugtechnik II Unrau, Gauterin
WS 21/22 76-T-MACH-102117-2 Automotive Engineering II Gauterin, Unrau
SS 2022 76-T-MACH-102117 Grundlagen der Fahrzeugtechnik II Unrau, Gauterin

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftlich

Dauer: 90 Minuten
Hilfsmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der Fahrzeugtechnik II
2114835, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114855] kombiniert werden.
Can not be combined with lecture [2114855]
Literaturhinweise

Automotive Engineering II
2114855, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
1. Fahrwerk: Radaufhängungen (Hinterachsen, Vorderachsen, Achskinematik), Reifen, Federn, Dämpfer
2. Lenkung: Manuelle Lenkungen, Servo-Lenkanlagen, Steer by Wire
3. Bremsen: Scheibenbremse, Trommelbremse, Vergleich der Bauarten

Lernziele:

Literaturhinweise
Elective literature:
3.112 Teilleistung: Grundlagen der Fertigungstechnik [T-MACH-105219]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102549 - Fertigungsprozesse

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp (VÜ)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149658</td>
<td>Grundlagen der Fertigungstechnik</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Schulze, Gerstenmeyer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp (VÜ)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105219</td>
<td>Grundlagen der Fertigungstechnik</td>
<td></td>
<td>Schulze</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105219</td>
<td>Grundlagen der Fertigungstechnik</td>
<td></td>
<td>Schulze</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (Dauer: 60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Veranstaltungsname</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Sprache</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Fertigungstechnik</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Deutsch</td>
<td>Schulze (WS 21/22)</td>
</tr>
</tbody>
</table>

Im Studierendenportal anzeigen
Inhalt

Die Themen im Einzelnen sind:

- Urformen (Gießen, Kunststofftechnik, Sintern, additive Fertigungsverfahren)
- Umformen (Blech-, Massivumformung)
- Trennen (Spanen mit geometrisch bestimmter und unbestimmter Schneide, Zerteilen, Abtragen)
- Fügen
- Beschichten
- Wärme- und Oberflächenbehandlung

Lernziele:
Die Studierenden ...

- können die Fertigungsverfahren ihrer grundlegenden Funktionsweise nach entsprechend der sechs Hauptgruppen (DIN 8580) klassifizieren.
- sind fähig, die wesentlichen Fertigungsverfahren der sechs Hauptgruppen (DIN 8580) anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, die charakteristischen Verfahrensmerkmale (Geometrie, Werkstoffe, Genauigkeit, Werkzeuge, Maschinen) der wesentlichen Fertigungsverfahren der sechs Hauptgruppen nach DIN 8580 zu beschreiben.
- sind fähig, aus den charakteristischen Verfahrensmerkmalen die relevanten prozessspezifischen technischen Vor- und Nachteile abzuleiten.
- sind in der Lage, für vorgegebene Bauteil eine Auswahl geeigneter Fertigungsprozesse durchzuführen.
- sind in der Lage, die für die Herstellung vorgegebener Beispielprodukte erforderlichen Fertigungsverfahren in den Ablauf einer Prozesskette einzuordnen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Start: 20.10.2021

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.113 Teilleistung: Grundlagen der Hochfrequenztechnik [T-ETIT-101955]

Verantwortung: Prof. Dr.-Ing. Thomas Zwick
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102129 - Grundlagen der Hochfrequenztechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
6

Lehrveranstaltungen

SS 2022	2308080	Tutorien zu 2308406 Grundlagen der Hochfrequenztechnik	SWS	Tutorium (Tu) / 📜	Nuß
SS 2022	2308406	Grundlagen der Hochfrequenztechnik	2 SWS	Vorlesung (V) / 📜	Nuß
SS 2022	2308408	Übungen zu 2308406 Grundlagen der Hochfrequenztechnik	2 SWS	Übung (Ü) / 📜	Nuß

Prüfungsveranstaltungen

| WS 21/22 | 7308406 | Grundlagen der Hochfrequenztechnik | Zwick |
| SS 2022 | 7308406 | Grundlagen der Hochfrequenztechnik | Zwick |

Legende: 🖥 Online, 📜 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird sowie durch die Bewertung von Hausübungen. Die Hausübungen können während des Semesters von den Studierenden bearbeitet und zur Korrektur abgegeben werden. Die Abgabe erfolgt in handschriftlicher Form.

Voraussetzungen
Keine

Empfehlungen
Kenntnisse zu Grundlagen der Hochfrequenztechnik sind hilfreich.

Anmerkungen
Die Modulnote ist die Note der schriftlichen Prüfung. Werden mindestens 50% der Gesamtpunkte der Hausübungen erreicht, erhält der Studierende bei bestandener schriftlicher Prüfung einen Notenbonus von 0,3 bzw. 0,4 Notenpunkten. Liegt die Note der schriftlichen Prüfung zwischen 4,0 und 1,3, so verbessert der Bonus die Note der schriftlichen Prüfung um eine Notenstufe (0,3 oder 0,4). Die genauen Kriterien für die Vergabe eines Bonus werden zu Vorlesungsbeginn bekanntgegeben.

Der einmal erworbene Notenbonus bleibt für eine eventuelle schriftliche Prüfung in einem späteren Semester bestehen. Die Hausübung stellt eine freiwillige Zusatzleistung dar, d.h. auch ohne den Notenbonus kann in der Klausur die volle Punktzahl bzw. die Bestnote erreicht werden.
3.114 Teilleistung: Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren [T-MACH-105044]

Verantwortung: Prof. Dr. Olaf Deutschmann
Prof. Dr. Jan-Dierk Grunwaldt
Dr.-Ing. Heiko Kubach
Hon.-Prof. Dr. Egbert Lox

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Leistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>WS 2021/22</th>
<th>SS 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2134138</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🧩 Lox, Grunwaldt, Deutschmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>Lox</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105044</td>
<td>Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren</td>
<td>Lox</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der katalytischen Abgasnachbehandlung bei Verbrennungsmotoren

Vorlesungsnummer: 2134138, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Organisatorisches

Blockvorlesung, Termin und Ort werden auf der Homepage des IFKM und ITCP bekannt gegeben.

Literaturhinweise

Skript, erhältlich in der Vorlesung

3.115 Teilleistung: Grundlagen der Mess- und Regelungstechnik [T-MACH-110988]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-105451 - Mess- und Regelungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung
2,5 Stunden

Voraussetzungen
keine
3.116 Teilleistung: Grundlagen der Technischen Logistik I [T-MACH-109919]

Verantwortung: Dr.-Ing. Martin Mittwollen
Dr.-Ing. Jan Oellerich

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik
M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesung</th>
<th>ECTS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2117095</td>
<td>Vorlesung</td>
<td>3 SWS</td>
<td>Präsenz/Online gemischt</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-109001</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-109003</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109919</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109919-mPr</td>
<td>Grundlagen der Technischen Logistik I</td>
<td>Mittwollen</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik I
2117095, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt
- Wirkmodell förderernter Maschinen
- Elemente zur Orts- und Lageveränderung
- fördererntechnische Prozesse
- Identifikationssysteme
- Antriebe
- Betrieb förderernter Maschinen
- Elemente der Intralogistik
- Anwendungs- und Rechenbeispiele zu den Vorlesungsinhalten während der Übungen

Die Studierenden können:
- Prozesse und Maschinen der Technischen Logistik beschreiben,
- Den grundsätzlichen Aufbau und die Wirkungsweise förderernter Maschinen mit Hilfe mathematischer Modelle modellieren,
- Den Bezug zu industriell eingesetzten Maschinen herstellen
- Mit Hilfe der erworbenen Kenntnisse reale Maschinen modellieren und rechnerisch dimensionieren.
Organisatorisches
Die Erfolgskontrolle erfolgt in Form einer schriftlichen oder mündlichen Prüfung (nach §4 (2), 1 bzw. 2SPO).

The assessment consists of a written or oral exam according to Section 4 (2), 1 or 2 of the examination regulation.

Es wird Kenntnis der Grundlagen der Technischen Mechanik vorausgesetzt.

Basics knowledge of technical mechanics is preconditioned.

Ergänzungsblätter, Präsentationen, Tafel.
Supplementary sheets, presentations, blackboard.

Präsenz: 48Std
Nacharbeit: 132Std
presence: 48h
rework: 132h

Literaturhinweise
Empfehlungen in der Vorlesung / Recommendations during lessons
3.117 Teilleistung: Grundlagen der Technischen Logistik II [T-MACH-109920]

Verantwortung: Dr.-Ing. Maximilian Hochstein
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
5

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungsstunden</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2117098</td>
<td>Grundlagen der technischen Logistik II</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🧩</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-109002</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Hochstein, Mitwollen</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Mittwochen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109920</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Hochstein, Mitwollen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-109920-mPr</td>
<td>Grundlagen der Technischen Logistik II</td>
<td>Mittwochen, Hochstein</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen (60 min.) Prüfung (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
keine

Empfehlungen
Es werden Kenntnis der Grundlagen der Technischen Mechanik und die Inhalte der Teilleistung "Grundlagen der Technischen Logistik I" (T-MACH-109919) vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Logistik II
2117098, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt
Lehrinhalte:

- Prozesse und Prozessnetzwerke der Intralogistik
- Materialfluss und Materialflusselement
- Aufbau von Fördermitteln
- Risikobeurteilung und Sicherheitstechnik
- Steuerung von Intralogistiksystemen

Lernziele: Die Studierenden können

- Prozesse und Prozessnetzwerke in der Intralogistik bescheiden und auslegen
- Den Materialfluss zwischen den Prozessen abbilden und analysieren
- Materialflusselemente beschreiben und gezielt einsetzen
- Materialflusselemente auf deren Sicherheit überprüfen

Beschreibung:
Diese Vorlesung baut auf GTL I auf und hat zum Ziel weitere Einblick in die drei großen Themengebiete der technischen Logistik zu ermöglichen:

- Prozesse in Intralogistiksystemen
- Technik der technischen Logistik
- Organisation und Steuerung von Intralogistikprozessen

Am Beispiel eines Intralogistiksystems werden über den Vorlesungszeitraum hinweg die einzelnen Themengebiete vorgestellt, so dass die Studierenden am Ende in der Lage sind ein solches Gesamtsystem zu verstehen und im Detail zu beschreiben.

Voraussetzungen:

- GTL I muss zuvor gehört worden sein.

Arbeitsaufwand:

- Präsenz: 36 Std.
- Nacharbeit: 114 Std.
3.118 Teilleistung: Grundlagen der technischen Verbrennung I [T-MACH-105213]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-/Übungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2165515</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Präsenz/Online gemischt</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2165517</td>
<td>Übungen zu Grundlagen der technischen Verbrennung I</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Online</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3165016</td>
<td>Fundamentals of Combustion I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Präsenz/Online gemischt</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3165017</td>
<td>Fundamentals of Combustion I (Tutorial)</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Online</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-/Übungsnummer</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I, WPF</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105213</td>
<td>Grundlagen der technischen Verbrennung I</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105464</td>
<td>Fundamentals of Combustion I</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende:
Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung I

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2165515, WS 21/22, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

- Grundlegende Begriffe und Phänomene
- Experimentelle Untersuchung von Flammen
- Erhaltungsgleichungen für laminare flache Flammen
- Chemische Reaktionen
- Reaktionsmechanismen
- Laminare Vormischflammen
- Laminare nicht-vorgemischte Flammen
- Zündprozesse
- Stickoxid-Bildung
- Bildung von Kohlenwasserstoffen und Ruß

Literaturhinweise

Vorlesungsskript,

Übungen zu Grundlagen der technischen Verbrennung I

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2165517, WS 21/22, 1 SWS</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Literaturhinweise

- Vorlesungsskript

Fundamentals of Combustion I
3165016, WS 21/22, 2 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- Grundlegende Begriffe und Phänomene
- Experimentelle Untersuchung von Flammen
- Erhaltungsgleichungen für laminare flache Flammen
- Chemische Reaktionen
- Reaktionsmechanismen
- Laminare Vormischflammen
- Laminare nicht-vorgemischte Flammen
- Zündprozesse
- Stickoxid-Bildung
- Bildung von Kohlenwasserstoffen und Ruß

Fundamentals of Combustion I (Tutorial)
3165017, WS 21/22, 1 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Übung (Ü)
Online

Inhalt
Ort/Zeit siehe Institut homepage
3.119 Teilleistung: Grundlagen der technischen Verbrennung II [T-MACH-105325]

Verantwortung: Dr. Viatcheslav Bykov
Prof. Dr. Ulrich Maas

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von:
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>Vorlesung (V)</th>
<th>2 SWS</th>
<th>Präsenz/Online gemischt</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2166538</td>
<td>Grundlagen der technischen Verbrennung II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2166539</td>
<td>Übung zu Grundlagen der technischen Verbrennung II</td>
<td>1 SWS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3166550</td>
<td>Fundamentals of Combustion II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>Vorlesung (V)</th>
<th>Grundlagen der technischen Verbrennung II</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105325</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>Vorlesung (V)</th>
<th>Grundlagen der technischen Verbrennung II</th>
<th>Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-T-MACH-105325</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online; Präsenz/Online gemischt; Präsenz; Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung mündlich; Dauer ca. 20 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen der technischen Verbrennung II

2166538, SS 2022, 2 SWS, Sprache: Deutsch, *Im Studierendenportal anzeigen*

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Die dreidimensionalen Navier-Stokes-Gleichungen für reagierende Strömungen
- Turbulente reaktive Strömungen
- Turbulente nicht vorgemischte Flammen
- Turbulente Vormischflammen
- Verbrennung flüssiger und fester Brennstoffe
- Motorklopfen
- Thermodynamik von Verbrennungsvorgängen
- Transporterscheinungen
- Auswirkungen von Verbrennungsprozessen auf die Atmosphäre

Literaturhinweise

Übung zu Grundlagen der technischen Verbrennung II

2166539, SS 2022, 1 SWS, Sprache: Deutsch, *Im Studierendenportal anzeigen*

Übung (Ü) Präsenz/Online gemischt

Inhalt

Berechnung und Simulation von Verbrennungsprozessen
Literaturhinweise
Skript Grundlagen der technischen Verbrennung (I+II) von Prof. Dr. rer. nat. habil. U. Maas

V Fundamentals of Combustion II
3166550, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
- Die dreidimensionalen Navier-Stokes-Gleichungen für reagierende Strömungen
- Turbulente reaktive Strömungen
- Turbulente nicht vorgemischte Flammen
- Turbulente Vormischflammen
- Verbrennung flüssiger und fester Brennstoffe
- Motorklopfen
- Thermodynamik von Verbrennungsvorgängen
- Transportscheinungen
- Auswirkungen von Verbrennungsprozessen auf die Atmosphäre

Organisatorisches
Time and location will be announced on the website and at the institute showcase.

Literaturhinweise
Vorlesungsskript;
3.120 Teilleistung: Grundlagen des Holzbaus [T-BGU-107463]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Prof. Dr.-Ing. Philipp Dietsch

Einrichtung:
KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von:
M-BGU-103697 - Grundlagen des Stahl- und Holzbaus

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Vorbereitungszeit</th>
<th>Veranstalter/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200507</td>
<td>Grundlagen des Holzbaus</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200508</td>
<td>Übungen zu Grundlagen des Holzbaus</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Veranstalter/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8235107463</td>
<td>Grundlagen des Holzbaus</td>
<td>Dietsch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8235107463</td>
<td>Grundlagen des Holzbaus</td>
<td>Dietsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung, 60 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.121 Teilleistung: Grundlagen des Stahlbaus [T-BGU-107462]

Verantwortung: Prof. Dr.-Ing. Thomas Ummenhofer
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103697 - Grundlagen des Stahl- und Holzbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen					
WS 21/22	6200504	Grundlagen des Stahlbaus	2 SWS	Vorlesung (V)	Ummenhofer
WS 21/22	6200505	Übungen zu Grundlagen des Stahlbaus	1 SWS	Übung (Ü)	Ummenhofer, Mitarbeiter/innen

Prüfungsveranstaltungen				
WS 21/22	8235107462	Grundlagen des Stahlbaus		Ummenhofer
SS 2022	8235107462	Grundlagen des Stahlbaus		Ummenhofer

Erfolgskontrolle(n)
[105] schriftliche Prüfung, 70 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.122 Teilleistung: Grundlagen des Stahlbetonbaus I [T-BGU-103389]

Verantwortung: Prof. Dr.-Ing. Alexander Stark
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103696 - Grundlagen des Stahlbetonbaus

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200509</td>
<td>Grundlagen des Stahlbetonbaus I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Labbé Romo</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200510</td>
<td>Übungen zu Grundlagen des Stahlbetonbaus I</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Labbé Romo</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8235103389</td>
<td>Grundlagen des Stahlbetonbaus I</td>
<td>Stark</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8235103389</td>
<td>Grundlagen des Stahlbetonbaus I</td>
<td>Stark</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 90 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.123 Teilleistung: Grundlagen des Stahlbetonbaus II [T-BGU-103390]

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
2

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 6200601</td>
<td>Grundlagen des Stahlbetonbaus II</td>
</tr>
<tr>
<td>WS 21/22 8236103390</td>
<td>Grundlagen des Stahlbetonbaus II</td>
</tr>
<tr>
<td>SS 2022 8236103390</td>
<td>Grundlagen des Stahlbetonbaus II</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung, 60 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.124 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I [MACH-102116]

Verantwortung: Dipl.-Ing. Horst Dietmar Bardehle
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I
2113814, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
</tr>
<tr>
<td>2113814, WS 21/22</td>
<td>76-T-MACH-102116</td>
</tr>
<tr>
<td>1 SWS</td>
<td>Unrau, Bardehle</td>
</tr>
<tr>
<td>Vorlesung (V)</td>
<td></td>
</tr>
<tr>
<td>Bardehle</td>
<td></td>
</tr>
<tr>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
<td>Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten I</td>
</tr>
<tr>
<td>76-T-MACH-102116, SS 2022</td>
<td>76-T-MACH-102116</td>
</tr>
<tr>
<td>Unrau, Bardehle</td>
<td>Bardehle, Unrau</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung

Dauer: 30 Minuten

Hilfsmittel: keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Inhalt
1. Historie und Design
2. Aerodynamik
3. Konstruktionstechnik (CAD/CAM, FEM)
4. Herstellungsverfahren von Aufbauteilen
5. Verbindungstechnik
6. Rohbau / Rohbaufertigung, Karosserieoberflächen

Lernziele:

Organisatorisches
Termine, nähere Informationen und eventuelle Terminänderungen: siehe Institutshomepage
Dates and further information will be published on the homepage of the institute

Literaturhinweise
1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3.125 Teilleistung: Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II [T-MACH-102119]

Verantwortung: Dipl.-Ing. Horst Dietmar Bardehle

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 2
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

SS 2022 2114840 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II 1 SWS Vorlesung (V) / 🗣 Bardehle

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Bardehle
SS 2022 76-T-MACH-102119 Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II Bardehle, Gauterin

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen zur Konstruktion von Kraftfahrzeugaufbauten II
2114840, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt
1. Karosserieeigenschaften / Prüfverfahren
2. Äußere Karosseriebauteile
3. Innenraum-Anbauteile
4. Fahrzeug-Klimatisierung
5. Elektrische Anlagen, Elektronik
6. Aufpralluntersuchungen
7. Projektmanagement-Aspekte und Ausblick

Lernziele:

Organisatorisches
Voraussichtliche Termine, nähere Informationen und evtl. Änderungen: siehe Institutshomepage. Präsenzveranstaltung unter Vorbehalt der Pandemie-Entwicklung
Scheduled dates, further information and possible changes of date: see homepage of the institute.
Literaturhinweise

1. Automobiltechnische Zeitschrift ATZ, Friedr. Vieweg & Sohn Verlagsges. mbH, Wiesbaden
2. Automobil Revue, Bern (Schweiz)
3. Automobil Produktion, Verlag Moderne Industrie, Landsberg
3.126 Teilleistung: Grundsätze der Nutzfahrzeugentwicklung [T-MACH-111389]

Verantwortung: Dr. Christof Weber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 4
Notenskala Drittelnoten
Turnus siehe Anmerkungen
Dauer 2 Sem.
Version 2

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>Prüfung (V)</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2113812</td>
<td></td>
<td>1 SWS</td>
<td>Weber</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2114844</td>
<td></td>
<td>1 SWS</td>
<td>Weber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
<th>Prüfung (V)</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-111389</td>
<td></td>
<td></td>
<td>Weber</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Gruppenprüfung
Dauer: ca. 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Anmerkungen
Grundsätze der Nutzfahrzeugentwicklung I, WS
Grundsätze der Nutzfahrzeugentwicklung II, SoSe

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Grundsätze der Nutzfahrzeugentwicklung I
2113812, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierenendenportal anzeigen

Inhalt
1. Einführung, Definitionen, Historik
2. Entwicklungswerkzeuge
3. Gesamtfahrzeug
4. Fahrerhaus, Rohbau
5. Fahrerhaus, Innenausbau
6. Alternative Antriebe
7. Antriebsstrang
8. Antriebsquelle Dieselmotor
9. Ladeluftgekühlte Dieselmotoren

Lernziele:
Die Studierenden kennen den Prozess der Nutzfahrzeugentwicklung von der Idee über die Konzeption bis hin zur Konstruktion. Sie wissen, dass bei der Umsetzung von Kundenwünschen neben der technischen Realisierbarkeit und der Funktionalität auch der Aspekt der Wirtschaftlichkeit beachtet werden muss.
Sie haben gute Kenntnisse in Bezug auf die Entwicklung von Einzelkomponenten und haben einen Überblick über die unterschiedlichen Fahrerhauskonzepte, einschließlich Innenraum und Innenraumgestaltung. Damit sind sie in der Lage, Nutzfahrzeugkonzepte zu analysieren und zu beurteilen und bei der Nutzfahrzeugentwicklung kompetent mitzuwirken.
Organisatorisches
Termine und Nähere Informationen: siehe Institutshomepage
Dates and further information will be published on the homepage of the institute.

Literaturhinweise

Inhalt
1. Nfz-Getriebe
2. Triebstrangzwischenelemente
3. Achssysteme
4. Vorderachsen und Fahrdynamik
5. Rahmen und Achsauflaung
6. Bremsanlage
7. Systeme
8. Exkursion

Lernziele:

Organisatorisches
Vorlesung findet nochmals als digitale Veranstaltung über ILIAS statt. Genaue Termine, nähere Informationen und eventuelle Terminänderungen:
siehe Institutshomepage.

Literaturhinweise
1. HILGERS, M.: Nutzfahrzeugtechnik lernen, Springer Vieweg, ISSN: 2510-1803
3.127 Teilleistung: Grundsätze der PKW-Entwicklung I [T-MACH-105162]

Verantwortung: Prof. Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>2</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr/WS</th>
<th>Modulnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung / Lehrveranstaltungsmodus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2113810</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Frech</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2113851</td>
<td>Principles of Whole Vehicle Engineering I</td>
<td>1 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Frech</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr/WS</th>
<th>Modulnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung / Lehrveranstaltungsmodus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>1 SWS</td>
<td>Frech, Unrau</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105162</td>
<td>Grundsätze der PKW-Entwicklung I</td>
<td>1 SWS</td>
<td>Frech, Unrau</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftlich

Dauer: 90 Minuten
Hilfsmittel: keine
Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung I
2113810, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
Termine und nähere Informationen finden Sie auf der Institutshomepage.
Kann nicht mit Lehrveranstaltung 2113851 kombiniert werden.
Date and further information will be published on the homepage of the institute.
Cannot be combined with lecture 2113851.

Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben
The scriptum will be provided during the first lessons
Inhalt
1. Prozess der PKW-Entwicklung
2. Konzeptionelle Auslegung und Gestaltung eines PKW
3. Gesetze und Vorschriften – Nationale und internationale Randbedingungen
4. Aerodynamische Auslegung und Gestaltung eines PKW I
5. Aerodynamische Auslegung und Gestaltung eines PKW II
6. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben I
7. Thermomanagement im Spannungsfeld von Styling, Aerodynamik und Packagevorgaben II

Lernziele:

Organisatorisches
Termine und nähere Informationen finden Sie auf der Institutshomepage.

Dats and further information will be published on the homepage of the institute.

Kann nicht mit Lehrveranstaltung 2113810 kombiniert werden

Cannot be combined with lecture 2113810.

Literaturhinweise
Skript zur Vorlesung wird zu Beginn des Semesters ausgegeben

The scriptum will be provided during the first lessons
3.128 Teilleistung: Grundsätze der PKW-Entwicklung II [T-MACH-105163]

Verantwortung: Prof. Dipl.-Ing. Rolf Frech
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 2
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

| SS 2022 | 2114842 | Grundsätze der PKW-Entwicklung II | 1 SWS | Block (B) / 🌐 | Frech |
| SS 2022 | 2114860 | Principles of Whole Vehicle Engineering II | 1 SWS | Block-Vorlesung (BV) / 🌐 | Frech |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105163 | Grundsätze der PKW-Entwicklung II | Unrau, Frech |
| SS 2022 | 76-T-MACH-105163 | Grundsätze der PKW-Entwicklung II | Frech, Unrau |

Legende: 🌐 Online, 🌐 Präsenz/Online gemischt, 🌐 Präsenz, 🌐 Abgesagt

Erfolgskontrolle(n)
schriftlich
Dauer: 90 Minuten
Hilfsmittel: keine

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundsätze der PKW-Entwicklung II
2114842, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches
Vorlesung findet als Blockvorlesung am Campus Ost, Geb. 70.04, Raum 219 statt. Termine werden über die Homepage bekannt gegeben.
Kann nicht mit der Veranstaltung [2114860] kombiniert werden.
Cannot be combined with lecture [2114860].

Literaturhinweise
Skript zur Vorlesung ist über ILIAS verfügbar.
Inhalt
1. Anwendungsorientierte Werkstoff- und Fertigungstechnik I
2. Anwendungsorientierte Werkstoff- und Fertigungstechnik II
3. Gesamtfahrzeugakustik in der PKW-Entwicklung
4. Antriebsakustik in der PKW-Entwicklung
5. Gesamtfahrzeugerprobung
6. Gesamtfahrzeugeigenschaften

Lernziele:

Organisatorisches
Kann nicht mit der Veranstaltung [2114842] kombiniert werden.
Cannot be combined with lecture [2114842].
Veranstaltung findet am Campus Ost, Geb. 70.04, Raum 219 statt. Genaue Termine entnehmen Sie bitte der Institushomepage.
Scheduled dates: see homepage of the institute.

Literaturhinweise
Das Skript zur Vorlesung ist über ILIAS verfügbar.
3.129 Teilleistung: Handlungsfelder der beruflichen Bildung [T-GEISTSOZ-100994]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100639 - Organisation und Handlungsfelder der beruflichen Bildung

Teilleistungsart Studienleistung
Leistungspunkte 2
Notenskala best./nicht best.
Version 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012135</td>
<td>Handlungsfelder der beruflichen Bildung (IP, PädBA, eWf)</td>
<td>2 SWS Seminar (S) Petersen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012114</td>
<td>Handlungsfelder der beruflichen Bildung</td>
<td>SWS Seminar (S) / 🧩 Gidion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400544</td>
<td>Handlungsfelder der beruflichen Bildung</td>
<td>Gidion</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400312</td>
<td>Handlungsfelder der beruflichen Bildung</td>
<td>Gidion</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen
keine

Empfehlungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Handlungsfelder der beruflichen Bildung
5012114, SS 2022, SWS, [Im Studierendenportal anzeigen]

Inhalt

Inhalte des Hauptseminars behandeln Themen wie Ausbildungsreife; Berufswahlprozesse; Duale Ausbildung; Berufseinführung; Berufliche Weiterbildung; Fortbildung; Umsetzung; Lebenslanges Lernen; Berufsbildung im internationalen Vergleich. Die Erarbeitung erfolgt in einem Prozess, bei dem zunächst wesentliche Aspekte der Thematik darzustellen sind, vor diesem Hintergrund eine wissenschaftliche Fragestellung formuliert wird, die sich auf dieses Thema und den diesbezüglichen Textabschnitt bezieht, und anschließend ein Beispiel für divergierende Positionen, die sich aus wissenschaftlicher Sicht zu der ausgeführten Sachlage abgeleitet wird. Die divergierenden Positionen werden im Seminarzusammenhang erörtert und eingeordnet.

Literatur unter anderem:
Berufsbildungsbericht des Bundesministeriums für Bildung und Forschung 2022, ggf. 2021
Datenreport zum Berufsbildungsbericht 2022, ggf. 2021
Ausbildungsreport der DGB-Jugend 2021 (ggf. aus dem Vorjahr)
DIHK-Ausbildungsumfrage 2021 (bzw. aktuell)
Leistungsnachweis durch aktive Mitwirkung und Übernahme der Gestaltung einer Thematik in einer Gruppe während der Veranstaltungsphase

Organisatorisches
Anmeldung und Information ab 01.04.2022 unter https://ilias.studium.kit.edu
3.130 Teilleistung: Hardware/Software Co-Design [T-ETIT-100671]

Verantwortung: Dr.-Ing. Oliver Sander
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100453 - Hardware/Software Co-Design

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übungen zu Vorlesung</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Hardware/Software Co-Design</td>
<td>2 SWS</td>
<td>Sander, Becker</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Übungen zu 2311620 Hardware/Software Co-Design</td>
<td>1 SWS</td>
<td>Lesniak</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Hardware/Software Co-Design</td>
<td>Sander</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Hardware/Software Co-Design</td>
<td>Sander</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Voraussetzungen
keine

Empfehlungen
Kenntnisse zu Grundlagen aus Digitalechnik und Informationstechnik sind hilfreich.
3.131 Teilleistung: Hochleistungsstromrichter [T-ETIT-100715]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100398 - Hochleistungsstromrichter

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2306319 | Hochleistungsstromrichter | 2 SWS | Vorlesung (V) / 📚 | Hiller |

Prüfungsveranstaltungen

| WS 21/22 | 7300043 | Hochleistungsstromrichter | | | Hiller |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen

keine

Empfehlungen

Kenntnisse zu den Grundlagen der LV „Elektrische Maschinen und Stromrichter“ sind hilfreich.
3.132 Teilleistung: Höhere Mathematik I [T-MATH-100275]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
M-GEISTSOZ-105474 - Orientierungsprüfung Metalltechnik
M-MATH-100280 - Höhere Mathematik I

Teilleistungsart

- **Prüfungsleistung schriftlich**

Leistungspunkte

- **7**

Notenskala

- **Drittelnoten**

Turnus

- **Jedes Semester**

Version

- **3**

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Lerneinheit</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0131000</td>
<td>Höhere Mathematik I für die Fachrichtung Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4</td>
<td>Vorlesung (V) / 🎵</td>
<td>Griesmaier</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0131200</td>
<td>Höhere Mathematik I für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Biotechnologie und MIT</td>
<td>4</td>
<td>Vorlesung (V) / 🎵</td>
<td>Griesmaier</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Vorlesungsname</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6700007</td>
<td>Höhere Mathematik I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6700025</td>
<td>Höhere Mathematik I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎵 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Erfolgreiche Bearbeitung der Übungsblätter in HM 1-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 1.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100525 - Übungen zu Höhere Mathematik I muss erfolgreich abgeschlossen worden sein.
3.133 Teilleistung: Höhere Mathematik I - Klausur [T-MATH-103353]

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 11
Notenskala: Drittelnoten
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0130000</td>
<td>Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik (HM I (ETIT))</td>
<td>6</td>
<td>Vorlesung (V) / Online</td>
<td>Anapolitanos</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0130100</td>
<td>Übungen zu 0130000 - HM I (ETIT) (Übung)</td>
<td>2</td>
<td>Übung (Ü) / Präsenz</td>
<td>Anapolitanos</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0133000</td>
<td>Höhere Mathematik I (Analysis) für die Fachrichtung Informatik (HM I)</td>
<td>4</td>
<td>Vorlesung (V) / Online</td>
<td>Herzog</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0133100</td>
<td>Übungen zu 0133000</td>
<td>2</td>
<td>Übung (Ü) / Präsenz</td>
<td>Herzog</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Lehrer(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6700038</td>
<td>Höhere Mathematik I (ETIT)</td>
<td>Kunstmann, Anapolitanos, Reichel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6700038</td>
<td>Höhere Mathematik I (ETIT)</td>
<td>Kunstmann, Anapolitanos, Reichel</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

keine
3.134 Teilleistung: Höhere Mathematik II [T-MATH-100276]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0180800</td>
<td>Höhere Mathematik II für die Fachrichtungen Maschinenbau, Geodäsie, Materialwissenschaft und Werkstofftechnik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Arens</td>
</tr>
<tr>
<td>SS 2022</td>
<td>0181000</td>
<td>Höhere Mathematik II für die Fachrichtungen Chemieingenieurwesen, Verfahrenstechnik, Bioingenieurwesen und MIT</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Arens</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6700008</td>
<td>Höhere Mathematik II</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6700001</td>
<td>Höhere Mathematik II</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
Erfolgreiche Bearbeitung der Übungsblätter in HM 2-Übungen ist Voraussetzung für die Teilnahme an der Klausur in HM 2.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MATH-100526 - Übungen zu Höhere Mathematik II muss erfolgreich abgeschlossen worden sein.
3.135 Teilleistung: Höhere Mathematik II - Klausur [T-MATH-103354]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101732 - Höhere Mathematik II

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Notenskala
Drittelnoten

Version
1

Lehrveranstaltungen

SS 2022 0180100 Höhere Mathematik II für die Fachrichtung Elektrotechnik und Informationstechnik 4 SWS Vorlesung (V) / 📚 Anapolitanos

SS 2022 0180150 Übungen zu 0180100 2 SWS Übung (Ü) / 📚 Anapolitanos

Prüfungsveranstaltungen

WS 21/22 0100012 Höhere Mathematik II (ETIT) Kunstmann, Anapolitanos

SS 2022 0100060 Höhere Mathematik II (ETIT) Kunstmann, Anapolitanos, Reichel

Legende: 📚 Online, 📚 Präsenz/Online gemischt, 🗺️ Präsenz, ✗ Abgesagt

Voraussetzungen

keine
3.136 Teilleistung: Höhere Mathematik III - Klausur [T-MATH-103357]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
apl. Prof. Dr. Peer Kunstmann

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101738 - Höhere Mathematik III

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 0100016</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
<tr>
<td>SS 2022 0100061</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.137 Teilleistung: Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes [T-MACH-106374]

Verantwortung: Dr.-Ing. Patricia Stock
Einrichtung: KIT-Fakultät für Maschinenbau
Kit-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2109021</td>
<td>Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes</td>
<td>2</td>
<td>Block (B)</td>
<td>Stock</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2109021</td>
<td>Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes</td>
<td>2</td>
<td>Block (B)</td>
<td>Stock</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-106374</td>
<td>Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes</td>
<td>Deml</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106374</td>
<td>Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes</td>
<td>Deml</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (ca. 20 Minuten)

Voraussetzungen
Termingerechte Vorabanmeldung im ILIAS, da teilnahmebeschränkt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Humanorientiertes Produktivitätsmanagement: Management des Personaleinsatzes

<table>
<thead>
<tr>
<th>Lehrveranstaltungs-ID</th>
<th>WS 21/22</th>
<th>SWS</th>
<th>Sprache</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>2109021</td>
<td>2</td>
<td>2</td>
<td>Deutsch</td>
<td>🗣️</td>
</tr>
</tbody>
</table>
Inhalt

1. Einführung: Wandel der Arbeitswelt, Arbeitsorganisation erfolgreicher Unternehmen, Anforderungen an das Industrial Engineering
2. Humanorientiertes Produktivitätsmanagement
3. Organisation von Unternehmen:
 - Prozessorientierte Arbeitsorganisation
 - Ablauf- und Aufbauorganisation
 - Ganzheitliche Unternehmenssysteme
4. Grundlagen des Personaleinsatzmanagements:
 - Ermittlung von Kapazitätsangebot & -bedarf
 - Arbeitszeitgestaltung
 - Formen von mobilen Arbeiten
5. Systematische Gestaltung des Personaleinsatzes
6. Bearbeitung eines Fallbeispiels in Gruppenarbeit
7. Präsentation der entwickelten Lösungen
 - Vorkenntnisse in Produktionsmanagement, Betriebsorganisation, Industrial Engineering erforderlich
 - Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft

Lernziele:
Der Studierende …

- Kann die aktuellen Megatrends, daraus resultierende Herausforderungen für Unternehmen sowie betriebliche Erfolgsfaktoren benennen und beschreiben
- Kann Aufgaben und Methoden des Humanorientierten Produktivitätsmanagements erklären
- Kann ein existierendes Arbeitssystem analysieren
- Kann den Personalbedarf und -bestand in einem Arbeitssystem ermitteln
- Kann die wesentlichen Methoden und Werkzeuge des Personaleinsatzmanagements einsetzen und bestehende Lösungen bewerten
- Kann den Personaleinsatz systematisch gestalten

Organisatorisches

- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Anwesenheitspflicht für die gesamte Vorlesung
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis zwei Wochen vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- nur für Studierende im Master-Studium
- Mündliche Prüfung (ca. 20 Minuten)

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
Inhalt

1. Einführung: Wandel der Arbeitswelt, Arbeitsorganisation erfolgreicher Unternehmen, Anforderungen an das Industrial Engineering
2. Humanorientiertes Produktivitätsmanagement
3. Organisation von Unternehmen:
 - Prozessorientierte Arbeitsorganisation
 - Ablauf- und Aufbauorganisation
 - Ganzheitliche Unternehmenssysteme
4. Grundlagen des Personaleinsatzmanagements:
 - Ermittlung von Kapazitätsangebot & -bedarf
 - Arbeitszeitgestaltung
 - Formen von mobilen Arbeiten
5. Systematische Gestaltung des Personaleinsatzes
6. Bearbeitung eines Fallbeispiels in Gruppenarbeit
7. Präsentation der entwickelten Lösungen

Lernziele:

Der Studierende ...

- Kann die aktuellen Megatrends, daraus resultierende Herausforderungen für Unternehmen sowie betriebliche Erfolgsfaktoren benennen und beschreiben
- Kann Aufgaben und Methoden des Humanorientierten Produktivitätsmanagements erklären
- Kann ein existierendes Arbeitssystem analysieren
- Kann den Personalbedarf und -bestand in einem Arbeitssystem ermitteln
- Kann die wesentlichen Methoden und Werkzeuge des Personaleinsatzmanagement einsetzen und bestehende Lösungen bewerten
- Kann den Personaleinsatz systematisch gestalten

Organisatorisches

Die Vorbesprechung am Mittwoch, 8.6. von 15:45 bis 17:15 Uhr wird online stattfinden.

Literaturhinweise

Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.138 Teilleistung: Hybride und elektrische Fahrzeuge [T-ETIT-100784]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>SWS</th>
<th>Veranstaltungsmodus</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2306323</td>
<td>Übungen zu 2306321 Hybride und elektrische Fahrzeuge</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semesternummer</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7306321</td>
<td>Hybride und elektrische Fahrzeuge</td>
<td>Doppelbauer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Zum Verständnis des Moduls ist Grundlagenwissen der Elektrotechnik empfehlenswert (erworben beispielsweise durch Besuch der Module "Elektrische Maschinen und Stromrichter", "Elektrotechnik für Wirtschaftsingenieure I+II" oder "Elektrotechnik und Elektronik für Maschinenbauingenieure").
3.139 Teilleistung: Hydraulische Strömungsmaschinen [T-MACH-105326]

Verantwortung: Dr. Balazs Pritz
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2157432</th>
<th>Vorlesung (V) / 🗣 Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulische Strömungsmaschinen</td>
<td>4 SWS</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105326</th>
<th>Hydraulische Strömungsmaschinen</th>
<th>Pritz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105326</td>
<td>Hydraulische Strömungsmaschinen</td>
<td>Pritz</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, ⚽ Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, 40 Min.

Voraussetzungen

Keine.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Hydraulische Strömungsmaschinen

2157432, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Fachgebiet: Strömungsmaschinen

Lehrinhalt:
1. Einleitung
2. Grundlagen
3. Systemanalyse
4. Elementare Theorie
5. Betriebsverhalten, Kennlinien
6. Ähnlichkeit, Kennzahlen
7. Regelung
8. Windturbinen, Propeller
9. Kavitation

Voraussetzungen:
keine

Empfehlungen:
2154512 Strömungslehre I
2153512 Strömungslehre II

Lernziele:
Die Studierenden erwerben Fähigkeiten die Grundlagen der Hydraulischen Strömungsmaschinen (Pumpen, Ventilatoren, Wasserturbinen, Windturbinen) zu benennen und auf Problemstellungen in verschiedenen Bereichen des Ingenieurwesens, insbesondere des Maschinenbaus anzuwenden.

Die Studenten sind damit in der Lage die Wirkungsweise hydraulischer Strömungsmaschinen und deren Wechselwirkung mit typischen Systemen in denen sie eingesetzt werden zu verstehen und zu bewerten.

Arbeitsaufwand:
Präsenzzzeit: 56 Stunden
Selbststudium: 150 Stunden
Prüfungsvorbereitung: 40 Stunden

Nachweis:
mündlich oder schriftlich (siehe Ankündigung)
Hilfsmittel: keine

Literaturhinweise
1. Fister, W.: Fluidenergiemaschinen I & II, Springer-Verlag
2. Bohl, W.: Strömungsmaschinen I & II , Vogel-Verlag
6. Kreiselpumpenlexikon. KSB Aktiengesellschaft
3.140 Teilleistung: Hydromechanik [T-BGU-103380]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101748 - Hydromechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200304</td>
<td>Hydromechanik</td>
<td>2</td>
<td>V / 🗣</td>
<td>Eiff</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200305</td>
<td>Übungen zu Hydromechanik</td>
<td>2</td>
<td>Ü</td>
<td>Dupuis</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200306</td>
<td>Tutorien zu Hydromechanik</td>
<td>2</td>
<td>T / 🗣</td>
<td>Eiff, Dupuis, Tutoren</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8233103380</td>
<td>Hydromechanik</td>
<td>-</td>
<td>Eiff</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8233103380</td>
<td>Hydromechanik</td>
<td>-</td>
<td>Eiff</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 100 min.

Voraussetzungen

Die Prüfungsvorleistung Hydromechanik (T-BGU-107586) muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-107586 - Prüfungsvorleistung Hydromechanik muss erfolgreich abgeschlossen worden sein.

Empfehlungen

keine

Anmerkungen

keine
Teilleistung: Industrieaerodynamik [T-MACH-105375]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Stefan Kröber

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2153425</td>
<td>Industrieaerodynamik</td>
<td>2 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Kröber</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105375</td>
<td>Industrieaerodynamik</td>
<td>Breitling</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105375</td>
<td>Industrieaerodynamik</td>
<td>Breitling</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, X Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Industrieaerodynamik
2153425, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Block-Vorlesung (BV)
Präsenz/Online gemischt

Inhalt
In dieser Vorlesung werden Strömungen behandelt, die in der Fahrzeugtechnik von Bedeutung sind. Besonderen Raum wird die Optimierung der Fahrzeugumströmung sowie die Vorstellung moderner industrieller Windkanaltechnik einnehmen. Der zweite große Themenblock umfasst sowohl aeroakustische Grundlagen als auch praktische Beispiele der Aeroakustik insbesondere aus dem Bereich der Fahrzeugtechnik.

Die Felder werden in ihrer Bedeutung und Phänomenologie erläutert, die theoretischen Grundlagen dargelegt und die Werkzeuge zur Simulation der Strömungen sowie deren Schallfeldern vorgestellt. Anhand dieser Beispiele werden Messverfahren und die industrierelevanten Methoden zur Erfassung und Beschreibung von Kräften, Strömungsstrukturen, Turbulenz sowie Schall im Überblick aufbereitet.

Eine Exkursion zu den Forschungs- und Entwicklungseinrichtungen der Mercedes-Benz AG ist geplant.

- Einführung
- Aerodynamik stumpfer Körper
- Industriell eingesetzte Strömungsmesstechnik und moderne Windkanalmesstechnik
- Überblick Strömungssimulation in der Automobilindustrie
- Fahrzeugumströmung
- Komfort beim offenen Fahren (Roadster & Cabriolet)
- Schmutzfreihaltung
- Aeroakustik: Grundlagen und praktische Beispiele insbesondere aus dem Bereich der Fahrzeugtechnik inklusive Messtechnik & numerische Methoden

Die Studierenden können die unterschiedlichen aerodynamischen und aeroakustischen Problemstellungen in der Fahrzeugtechnik beschreiben. Sie sind in der Lage, sowohl die Fahrzeugumströmung als auch die Aeroakustik von Fahrzeugen zu analysieren.

Organisatorisches
Blockvorlesung - Die Anmeldung im Sekretariat ist bis zum 11.02.2022 erforderlich

Literaturhinweise
Vorlesungsskript
3.142 Teilleistung: Industrielle Fertigungswirtschaft [T-MACH-105388]

Verantwortung: Simone Dürrschnabel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105388 | Industrielle Fertigungswirtschaft | Deml |

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine
3.143 Teilleistung: Informatik im Maschinenbau [T-MACH-105205]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-105449 - Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2121390</th>
<th>Informatik im Maschinenbau</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ) / 📚</th>
<th>Ovtcharova, Elstermann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>3121034</td>
<td>Computer Science for Engineers</td>
<td>4 SWS</td>
<td>Vorlesung / Übung (VÜ) / 📚</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

WS 21/22	76-T-MACH-105205	Informatik im Maschinenbau	Ovtcharova
WS 21/22	76-T-MACH-105205-English	Informatik im Maschinenbau - Englisch	Ovtcharova
SS 2022	76-T-MACH-105205	Informatik im Maschinenbau	Ovtcharova, Elstermann
SS 2022	76-T-MACH-105205-english	Informatik im Maschinenbau - Englisch	Ovtcharova

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung [180 min]

Voraussetzungen

Prüfungsvoraussetzung: T-MACH-105206 „Informatik im Maschinenbau, VL“ muss bestanden sein.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105206 - Informatik im Maschinenbau, VL muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Informatik im Maschinenbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>2121390, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.

Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.

Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Literaturhinweise

- „Grundkurs Programmieren in Java“ Carl Hanser Verlag GmbH & CO. KG; Auflage 6, ISBN 10: 3446426639
Inhalt
Objektorientierung: Definition und wichtige Merkmale der Objektorientierung, Objektorientierte Modellierung mit UML.
Algorithmen: Eigenschaften von Algorithmen, Abschätzung der Komplexität, Entwurfsmethoden, wichtige Beispiele.
Datenverwaltungssysteme: Relationales Datenmodell, relationale Algebra, deklarative Sprache SQL.

Literaturhinweise
3.144 Teilleistung: Informatik im Maschinenbau, Seminar [T-MACH-111001]

Verantwortung:
Dr.-Ing. Matthes Elstermann
Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von:
M-MACH-105449 - Informatik

Erfolgskontrolle(n)
Schriftliche Seminarausarbeitung und Abschlussvortrag.

Voraussetzungen
Keine
Teilleistung: Informatik im Maschinenbau, VL [T-MACH-105206]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen

Bestandteil von: M-MACH-105449 - Informatik

Voraussetzung für: T-MACH-105205 - Informatik im Maschinenbau

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2121392</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3121036</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105206</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105206</td>
</tr>
</tbody>
</table>

Legende: 🚗 Online, 🕳 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnerpraktikum zu Informatik im Maschinenbau

2121392, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

Organisatorisches

Wenn Poolräume nutzbar, dann Poolräume

Literaturhinweise

Übungsblätter / exercise sheets

Computer Science for Engineers Lab Course

3121036, SS 2022, 2 SWS, Sprache: Englisch, [Im Studierendenportal anzeigen]

Inhalt

Organisatorisches

Wenn Präsenz möglich, dann ID-Raum Nutzung
Literaturhinweise
Exercise sheets / Übungsblätter
3.146 Teilleistung: Informationsfusion [T-ETIT-106499]

Verantwortung: Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-103264 - Informationsfusion

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021/22</td>
<td>2302139 Informationsfusion</td>
<td>2 SWS</td>
<td>Heizmann</td>
</tr>
<tr>
<td>2021/22</td>
<td>2302141 Übungen zu 2302139 Informationsfusion</td>
<td>1 SWS</td>
<td>Heizmann</td>
</tr>
<tr>
<td>2022/23</td>
<td>7302139 Informationsfusion</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022/23</td>
<td>7302139 Informationsfusion</td>
<td></td>
<td>Heizmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Grundlagen der Stochastik sind hilfreich.
3.147 Teilleistung: Informationstechnik I [T-ETIT-109300]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104539 - Informationstechnik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2311651 Informationstechnik I</td>
<td>2</td>
<td>Vorlesung (V) /</td>
<td>Sax</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2311652 Übungen zu 2311651 Informationstechnik I</td>
<td>1</td>
<td>Übung (Ü) /</td>
<td>Haas</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Prüfung für</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7311651 Informationstechnik I</td>
<td></td>
<td></td>
<td></td>
<td>Sax</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7311651 Informationstechnik I</td>
<td></td>
<td></td>
<td></td>
<td>Sax</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine

Empfehlungen
Grundlagen der Programmierung sind hilfreich (MINT-Kurs).
Die Inhalte des Moduls Digitaltechnik sind hilfreich.
3.148 Teilleistung: Informationstechnik I - Praktikum [T-ETIT-109301]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104539 - Informationstechnik I

Lehrveranstaltungen

| SS 2022 | 2311653 | Informationstechnik I – Praktikum | 1 SWS | Praktikum (P) / Online | Sax |

Prüfungsveranstaltungen

| SS 2022 | 7311653 | Informationstechnik I - Praktikum | Sax |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Voraussetzungen
keine
3.149 Teilleistung: Informationstechnik in der industriellen Automation [T-ETIT-100698]

Verantwortung: Dr.-Ing. Peter-Axel Bort
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100367 - Informationstechnik in der industriellen Automation

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2302144</td>
<td>Informationstechnik in der industriellen Automation</td>
<td>2 SWS</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Lehrveranstaltung</th>
<th>Prüfungsleitung</th>
<th>Vorlesung (V) / 🗣</th>
<th>Bort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7302144</td>
<td>Informationstechnik in der industriellen Automation</td>
<td>Bort</td>
<td>🗣</td>
<td>Bort</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7302144</td>
<td>Informationstechnik in der industriellen Automation</td>
<td>Bort</td>
<td>🗣</td>
<td>Bort</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧱 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20-25 Minuten) über die ausgewählten Lehrveranstaltungen, mit denen in Summe die Mindestanforderung an LP erfüllt wird.

Voraussetzungen
keine
Teilleistung: Integralrechnung und Funktionen mehrerer Veränderlicher - Klausur [T-MATH-103324]

Verantwortung:
- PD Dr. Volker Grimm
- Prof. Dr. Marlis Hochbruck
- PD Dr. Markus Neher

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von:
- M-MATH-101714 - Integralrechnung und Funktionen mehrerer Veränderlicher

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>9</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Vorscheinzeit</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>0181300</td>
<td>Höhere Mathematik 2 für die Fachrichtung Bauingenieur*inwesen: Integralrechnung und Funktionen mehrerer Veränderlicher</td>
<td>4 SWS</td>
<td>Vorlesung (V) / Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>0181400</td>
<td>Übungen zu 0181300</td>
<td>2 SWS</td>
<td>Übung (Ü) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Prüfungstitel</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>01015866090800806_HM2-Bau-Ing.</td>
<td>Integralrechnung und Funktionen mehrerer Veränderlicher - Klausur</td>
<td>Hochbruck</td>
</tr>
<tr>
<td>SS 2022</td>
<td>010157660908002806_HM2-Bau-Ing.</td>
<td>Integralrechnung und Funktionen mehrerer Veränderlicher - Klausur</td>
<td>Hochbruck</td>
</tr>
</tbody>
</table>

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Höhere Mathematik 2 für die Fachrichtung Bauingenieur*inwesen:
Integralrechnung und Funktionen mehrerer Veränderlicher

0181300, SS 2022, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
3.151 Teilleistung: Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen [T-MACH-105188]

Verantwortung: Karl-Hubert Schlichtenmayer
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102618 - Schwerpunkt: Produktionstechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2150601</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>2 SWS</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>Vorlesung (V) / 🧩 Schlichtenmayer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Prüfungsveranstaltung</th>
<th>Prüfungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105188</td>
<td>Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen</td>
<td>Schlichtenmayer</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrative Strategien und deren Umsetzung in Produktion und Entwicklung von Sportwagen
2150601, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:
- Einführung und gesellschaftliche Trends mit Auswirkungen auf das Sportwagengeschäft
- Automobile Produktionsprozesse – von der Idee bis zum Ende des Lebenszyklus
- Integrierte Entwicklungsstrategie und ganzheitliches Kapazitätsmanagement
- Management von Entwicklungsprojekten (Matrixorganisation, Multiprojektmanagement, Entwicklungscontrolling)
- Zusammenspiel zwischen Entwicklung, Produktion und Einkauf
- Rolle der Produktion aus Entwicklungssicht - Restriktion und Befähiger?
- Global verteilte Produktion und Entwicklung – Herausforderung China
- Methoden zur Identifikation von technologischen Kernkompetenzen

Lernziele:
Die Studierenden …
- können die technologischen und gesellschaftlichen Herausforderungen der Automobilindustrie erörtern.
- sind befähigt Zusammenhänge zwischen Produktentwicklungsprozess und Produktionssystem zu diskutieren.
- sind in der Lage die Herausforderungen globaler Märkte auf Produktion und Entwicklung von exportfähigen Premium-Produkten zu diskutieren.
- sind in der Lage Methoden zur Identifikation von Kernkompetenzen eines Unternehmens zu erläutern.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.152 Teilleistung: Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 [T-MACH-108849]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2150660</th>
<th>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</th>
<th>6 SWS</th>
<th>Vorlesung / Übung (VÜ) / 🧩</th>
<th>Lanza</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-108849</th>
<th>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</th>
<th>Lanza</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108849</td>
<td>Integrierte Produktionsplanung im Zeitalter von Industrie 4.0</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (40 min)

Voraussetzungen
Weder "T-MACH-109054 - Integrierte Produktionsplanung im Zeitalter von Industrie 4.0" noch "T-MACH-102106 Integrierte Produktionsplanung" dürfen begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Integrierte Produktionsplanung im Zeitalter von Industrie 4.0
2150660, SS 2022, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt
Inhalt
Im Rahmen dieser ingenieurwissenschaftlichen Veranstaltung wird die Integrierte Produktionsplanung im Zeitalter von Industrie 4.0 vermittelt. Neben einer umfassenden Einführung in Industrie 4.0 werden zu Beginn der Vorlesung folgende Themenfelder adressiert:

- Grundlagen, Geschichte und zeitliche Entwicklung der Produktion
- Integrierte Produktionsplanung und durchgängiges digitales Engineering
- Prinzipien Ganzheitlicher Produktionssysteme und Weiterentwicklung mit Industrie 4.0

Darauf aufbauend werden die Phasen der Integrierten Produktionsplanung in Anlehnung an die VDI-Richtlinie 5200 vermittelt, wobei im Rahmen von Fallstudien auf Besonderheiten der Teilefertigung und Montage eingegangen wird:

- Systematik der Fabrikplanung
- Zielfestlegung
- Datenerhebung und –analyse
- Konzeptplanung (Strukturentwicklung, Strukturdimensionierung und Groblayout)
- Detailplanung (Produktionsplanung und –steuerung, Feinlayout, IT-Systeme in der Industrie 4.0 Fabrik)
- Realisierungsvorbereitung und –überwachung
- Hochlauf und -serienbetreuung

Lernziele:
Die Studierenden …

- können grundlegende Fragestellungen der Produktionstechnik erörtern.
- können die grundlegenden Fragestellungen der Produktionstechnik zur Planung von Produktionsprozessen anwenden.
- sind in der Lage die Methoden, Vorgehensweisen und Techniken der Integrierten Produktionsplanung zu analysieren und zu bewerten und können die vorgestellten Inhalte und Herausforderungen und Handlungsfelder in der Praxis reflektieren.
- kann die Methoden der Integrierten Produktionsplanung auf neue Problemstellungen anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.
- können ihr Wissen zielgerichtet für eine effiziente Produktionstechnik einsetzen.

Arbeitsaufwand:
MACH:
Präsenzzeit: 63 Stunden
Selbststudium: 177 Stunden

WING:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden

Organisatorisches
Vorlesungstermine dienstags 14.00 Uhr und donnerstags 14.00 Uhr, Übungstermine donnerstags 15.45 Uhr. Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilia (https://ilias.studium.kit.edu/).
3.153 Teilleistung: International Production Engineering A [T-MACH-110334]

Verantwortung:
Prof. Dr.-Ing. Jürgen Fleischer

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2150600</th>
<th>International Production Engineering A</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-110334</th>
<th>International Production Engineering A</th>
<th>Vorlesung (V)</th>
<th>Fleischer</th>
</tr>
</thead>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗿 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet):
- Ergebnis der Projektarbeit und Abschlusspräsentation mit Gewichtung 65%
- Mündliche Prüfung (ca. 15 min) mit Gewichtung 35%

Voraussetzungen

nicht anzuwenden für T-MACH-109055

Modellierte Voraussetzungen

Es muss eine von 2 Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-108844 - Automatisierte Produktionsanlagen muss begonnen worden sein.
2. Die Teilleistung T-MACH-110962 - Werkzeugmaschinen und hochpräzise Fertigungssysteme muss begonnen worden sein.

Empfehlungen

Diese Veranstaltung sollte in Kombination mit International Production Engineering B im darauffolgenden Wintersemester gehört werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

International Production Engineering A

| 2150600, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen | Vorlesung (V) Präsenz/Online gemischt |
Inhalt
Die Veranstaltung „International Production Engineering“ bietet einen praxisnahen Einblick in die Entwicklung von Produktionsanlagen im internationalen Umfeld. Ein studentisches Team bearbeitet eine aktuelle und konkrete Problemstellung im Bereich der Produktionstechnik, die durch einen Industriepartner in das Projekt eingebracht wird, der sowohl in Deutschland als auch in China tätig ist.

Näheres zur Lehrveranstaltung wird in einer Informationsveranstaltung besprochen (immer Januar/Februar, genaues Datum wird auf der Homepage veröffentlicht: www.wbk.kit.edu).

Das Projekt bietet …

- die einmalige Möglichkeit, Gelerntes praxisnah, interdisziplinär und kreativ umzusetzen
- berufsvorbereitende Einblicke in vielfältige Entwicklungstätigkeiten zu gewinnen
- Zusammenarbeit mit einem attraktiven Industriepartner
- Arbeit im Team mit anderen Studenten und kompetenter Unterstützung durch wissenschaftliche Mitarbeiter
- erste praktische Erfahrungen im Projektmanagement
- internationale Praxiserfahrung.

Lernziele:
Die Studierenden …

- können im Team technische Lösungsansätze in Produktionsanlagen entwickeln und deren Machbarkeit nach technischen und wirtschaftlichen Kriterien bewerten
- sind befähigt, die wesentlichen Komponenten und Baugruppen einer Produktionsanlage auszuwählen sowie die erforderlichen Auslegungsrechnungen durchzuführen
- können mithilfe von FEM-Simulationen das statische und dynamische Verhalten einer Baugruppe vorhersagen und bewerten
- sind in der Lage, die eigenen Arbeits- und Entscheidungsprozesse gegenüber Dritten darzustellen, zu planen und zu beurteilen
- können grundlegende Methoden des Projektmanagements im internationalen Umfeld praktisch anwenden.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches

Die Vorlesung kann nur in Kombination mit der Lehrveranstaltung International Production Engineering B gehört werden.

Literaturhinweise
Medien:
Unterlagen zur Veranstaltung werden über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture documents will be provided in Ilias (https://ilias.studium.kit.edu/).
3.154 Teilleistung: International Production Engineering B [T-MACH-110335]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Prüfungsform</th>
<th>SWS</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149620</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Deutsch/Englisch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Prüfungsform</th>
<th>SWS</th>
<th>Sprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110335</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Deutsch/Englisch</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):
- Ergebnis der Projektarbeit und Abschlusspräsentation mit Gewichtung 65%
- Mündliche Prüfung (ca. 15 min) mit Gewichtung 35%

Voraussetzungen
nicht anzuwenden für T-MACH-109055

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Es muss eine von 2 Bedingungen erfüllt werden:
 1. Die Teilleistung T-MACH-108844 - Automatisierte Produktionsanlagen muss erfolgreich abgeschlossen worden sein.
 2. Die Teilleistung T-MACH-110962 - Werkzeugmaschinen und hochpräzise Fertigungssysteme muss erfolgreich abgeschlossen worden sein.

2. Die Teilleistung T-MACH-110334 - International Production Engineering A muss begonnen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

International Production Engineering B
2149620, WS 21/22, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt
Inhalt

Das Projekt bietet …

- die einmalige Möglichkeit, Gelerntes praxisnah, interdisziplinär und kreativ umzusetzen
- berufsvorbereitende Einblicke in vielfältige Entwicklungstätigkeiten zu gewinnen
- Zusammenarbeit mit einem attraktiven Industriepartner
- Arbeit im Team mit anderen Studenten und kompetenter Unterstützung durch wissenschaftliche Mitarbeiter
- erste praktische Erfahrungen im Projektmanagement
- internationale Praxiserfahrung.

Lernziele:
Die Studierenden …

- können im Team technische Lösungsideen im Umfeld von Produktionsanlagen entwickeln und deren Machbarkeit nach technischen und wirtschaftlichen Kriterien bewerten
- sind befähigt, die wesentlichen Komponenten und Baugruppen einer Produktionsanlage auszuwählen sowie die erforderlichen Auslegungsrechnungen durchzuführen
- können mithilfe von FEM-Simulationen das statische und dynamische Verhalten einer Baugruppe vorhersagen und bewerten
- sind in der Lage, die eigenen Arbeits- und Entscheidungsprozesse gegenüber Dritten darzustellen, zu planen und zu beurteilen
- können grundlegende Methoden des Projektmanagements im internationalen Umfeld praktisch anwenden.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches

Die Vorlesung kann nur in Kombination mit International Production Engineering A gehört werden. Voraussetzung für die Vorlesung ist eine bestandene Prüfung in "Werkzeugmaschinen und Handhabungstechnik" oder "Automatisierte Produktionsanlagen" sowie die Teilnahme an der Lehrveranstaltung "International Production Engineering A" im vorhergehenden Sommersemester.

Die Vorlesung wird in Kombination mit International Production Engineering A umgesetzt. Die Prüfung ist eine bestandene Prüfung in "Werkzeugmaschinen und Handhabungstechnik" oder "Automatisierte Produktionsanlagen" sowie die Teilnahme an der Lehrveranstaltung "International Production Engineering A" im vorhergehenden Sommersemester.

For organizational reasons, the number of participants in the course is limited. Hence, a selection process will take place. Applications can be made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

The lecture can only be attended in combination with International Production Engineering A. Requirements for the lecture are a passed examination in "Machine Tools and Industrial Handling" or "Automated Production Systems" as well as a participation in the course "International Production Engineering A" in the previous summer semester.

Literaturhinweise
Medien:
Unterlagen zur Veranstaltung werden über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture documents will be provided in ilias (https://ilias.studium.kit.edu/).
3.155 Teilleistung: Konstruktionsbaustoffe [T-BGU-103383]

Verantwortung: Prof. Dr.-Ing. Frank Dehn
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101750 - Baustoffe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>9</td>
<td>Dritten</td>
<td>Jedes</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnr.</th>
<th>Veranstaltungsart</th>
<th>Erläuterungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200307</td>
<td>Vorlesung (V)</td>
<td>Dehn</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200308</td>
<td>Übung (Ü) / 📑</td>
<td>Dehn, Assistenten</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnr.</th>
<th>Veranstaltungsart</th>
<th>Erläuterungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8233103383</td>
<td>Konstruktionsbaustoffe</td>
<td>Dehn</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8233103383</td>
<td>Konstruktionsbaustoffe</td>
<td>Dehn</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

schriftliche Prüfung, 120 min.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Konstruktionsbaustoffe

<table>
<thead>
<tr>
<th>Kursnr.</th>
<th>Veranstaltungsart</th>
<th>Erläuterungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200308</td>
<td>Vorlesung (V)</td>
<td></td>
</tr>
<tr>
<td>6200308</td>
<td>Übung (Ü) / 📑</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

08:00-09:30 Gruppe A 09:45-11:15 Gruppe B 11:30-13:00 Gruppe C 14:00-15:30 Gruppe D Siehe Aushang
3.156 Teilleistung: Konstruktiver Leichtbau [T-MACH-105221]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Norbert Burkardt

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2146190</th>
<th>Konstruktiver Leichtbau</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣 Albers, Burkardt</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105221</th>
<th>Konstruktiver Leichtbau</th>
<th>Albers, Burkardt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105221</td>
<td>Konstruktiver Leichtbau</td>
<td>Albers, Burkardt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (90 min)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Konstruktiver Leichtbau

V 2146190, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Die Vorlesung wird durch Gastvorträge "Leichtbau aus Sicht der Praxis" aus der Industrie ergänzt.

Die Studierenden ...

- können zentrale Leichtbaustrategien hinsichtlich ihres Potenzials bewerten und beim Konstruieren anwenden.
- sind fähig, unterschiedliche Versteifungsmethoden qualitativ anzuwenden und hinsichtlich ihrer Wirksamkeit zu bewerten.
- sind in der Lage, die Leistungsfähigkeit der rechnergestützten Gestaltung und der damit verbundenen Grenzen und Einflüsse auf die Fertigung zu bewerten.
- können Grundlagen des Leichtbaus aus Systemsicht und in dessen Kontext zum Produktentstehungsprozess wiedergeben.
Organisatorisches
Vorlesungsfolien können über die eLearning-Plattform ILIAS bezogen werden.
Die Prüfungsart wird gemäß der Prüfungsordnung zu Vorlesungsbeginn angekündigt:

- Schriftliche Prüfung: 90 min Prüfungsdauer
- Mündliche Prüfung: 20 min Prüfungsdauer
- Erlaubte Hilfsmittel: keine

Medien: Beamer
Arbeitsbelastung:

- Präsenzzeit: 21 h
- Selbststudium: 99 h

Lecture slides are available via eLearning-Platform ILIAS.
The type of examination (written or oral) will be announced at the beginning of the lecture:

- written examination: 90 min duration
- oral examination: 20 min duration
- auxiliary means: None

Media: Beamer
Workload:

- regular attendance: 21 h
- self-study: 99 h

Literaturhinweise
Klein, B.: Leichtbau-Konstruktion. Vieweg & Sohn Verlag, 2007
3.157 Teilleistung: Kontinuumsmechanik der Festkörper und Fluide [T-MACH-110377]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Prof. Dr.-Ing. Bettina Frohnapfel

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2161252</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Online gemischt</td>
<td>1 Sem.</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Lehrer</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>Böhlke, Frohnapfel</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110377</td>
<td>Kontinuumsmechanik der Festkörper und Fluide</td>
<td>Böhlke</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung

Voraussetzungen

bestandene Studienleistung "Übung zu Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110333)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110333 - Übungen zu Kontinuumsmechanik der Festkörper und Fluide muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, und Studierende des Studiengangs MATWERK werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Kontinuumsmechanik der Festkörper und Fluide
2161252, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- Einführung in die Tensorrechnung
- Kinematik
- Bilanzgleichungen der Mechanik und Thermodynamik
- Materialtheorie der Festkörper und Fluide
- Feldgleichungen für Festkörper und Fluide
- Thermomechanische Kopplungen
- Dimensionsanalyse

Literaturhinweise

Vorlesungs- und Übungs- skript
Schade, H.: Strömungslehre, de Gruyter 2013
3.158 Teilleistung: Laborpraktikum [T-BGU-103403]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101763 - Laborpraktikum

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsfeld</th>
<th>Veranstaltungscode</th>
<th>Studienbereich</th>
<th>SWS</th>
<th>Sprache</th>
<th>Praktikum (P) / 🗣</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200118</td>
<td>Laborpraktikum</td>
<td>SWS</td>
<td></td>
<td></td>
<td>Vortisch, Mitarbeiter/innen</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsfeld</th>
<th>Veranstaltungscode</th>
<th>Studienbereich</th>
<th>SWS</th>
<th>Praktikum (P) / 🗣</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231103403</td>
<td>Laborpraktikum</td>
<td>SWS</td>
<td></td>
<td></td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰 Präsenz/Online gemischt, 🗣 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)

Versuchsausarbeitungen (je ca. 2-4 Seiten) zu 4 Versuchen in 4 ausgewählten Instituten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Laborpraktikum

6200118, WS 21/22, SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

Organisatorisches

Prüfung

Die erfolgreiche Teilnahme an einem Teilkurs wird vom entsprechenden Institut bestätigt. Nach Vorlage von 4 Teilnahmebescheinigungen gilt die Leistung "Laborpraktikum" als bestanden. Das Ergebnis wird im Campus-System zu Ende des Semesters eingetragen.

Voraussetzungen

keine

Teilnehmerzahl

etwa 85 Personen

Organisatorisches

Generelle Informationen zur Organisation auf der Website des IfV und Terminvergabe über ILIAS
3.159 Teilleistung: Lager- und Distributionssysteme [T-MACH-105174]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen
SS 2022 2118097 Lager- und Distributionssysteme 2 SWS Vorlesung (V) / 🗣 Furmans

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105174 Lager- und Distributionssysteme Furmans, Mittwollen

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Lager- und Distributionssysteme
2118097, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise
ARNOLD, Dieter, FURMANS, Kai (2005)
Materialfluss in Logistiksystemen, 5. Auflage, Berlin: Springer-Verlag

ARNOLD, Dieter (Hrsg.) et al. (2008)
Handbuch Logistik, 3. Auflage, Berlin: Springer-Verlag

Warehouse Science

GUDEHUS, Timm (2005)
Logistik, 3. Auflage, Berlin: Springer-Verlag

FRAZELLE, Edward (2002)
World-class warehousing and material handling, McGraw-Hill

MARTIN, Heinrich (1999)
Praxiswissen Materialflußplanung: Transport, Hanshaben, Lagern, Kommissionieren, Braunschweig, Wiesbaden: Vieweg

WISSER, Jens (2009)
Der Prozess Lagern und Kommissionieren im Rahmen des Distribution Center Reference Model (DCRM); Karlsruhe: Universitätsverlag

Eine ausführliche Übersicht wissenschaftlicher Paper findet sich bei:

ROODBERGEN, Kees Jan (2007)
Warehouse Literature
3.160 Teilleistung: Lasereinsatz im Automobilbau [T-MACH-105164]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen
SS 2022 2182642 Lasereinsatz im Automobilbau 2 SWS Vorlesung (V) / ⬆ Schneider

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105164 Lasereinsatz im Automobilbau Schneider
SS 2022 76-T-MACH-105164 Lasereinsatz im Automobilbau Schneider

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, ⬆ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (30 min)
keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-MACH-102102 - Physikalische Grundlagen der Lasertechnik darf nicht begonnen worden sein.

Empfehlungen
Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lasereinsatz im Automobilbau
2182642, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Nd:YAG-, CO2-, Hochleistungs-Dioden-Laser)
- Strahleigenschaften, -führung, -formung
- Grundlagen der Materialbearbeitung mit Lasern
- Laseranwendungen im Automobilbau
- Wirtschaftliche Aspekte
- Lasersicherheit

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise von Nd:YAG-, CO2- und Hochleistungs-Dioden-Laserstrahlquellen erläutern.
- kann die wichtigsten lasergestützten Materialbearbeitungsprozesse für die Anwendung im Automobilbau benennen und für diese den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben
- kann Bearbeitungsaufgaben bzgl. ihrer Anforderungen analysieren und geeignete Laserstrahlquellen und Prozessparameter auswählen.
- kann die Gefahren beim Umgang mit Laserstrahlung beschreiben und geeignete Maßnahmen zur Gewährleistung der Arbeitssicherheit ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Veranstaltung kann nicht zusammen mit der Veranstaltung *Physikalische Grundlagen der Lasertechnik* [2181612] gewählt werden.

Präsenzzeit: 22,5 Stunden
Selbststudium: 97,5 Stunden
mündliche Prüfung (ca. 30 min)

keine Hilfsmittel

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.161 Teilleistung: Leadership and Management Development [T-MACH-105231]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Andreas Ploch

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Leadership and Management Development</td>
<td>2</td>
<td>mündlich</td>
<td>Ploch</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Leadership and Management Development</td>
<td></td>
<td>mündlich</td>
<td>Ploch, Albers</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Leadership and Management Development</td>
<td></td>
<td>mündlich</td>
<td>Ploch, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- mündliche Prüfung (20 min)

Voraussetzungen

- keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Leadership and Management Development

2145184, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Überblick über Führungstheorien und deren Anwendung
- Ausgewählte Führungsinstrumente und deren Einsatz in Organisationen
- Kommunikation und Führung
- Change Management
- Management Development und MD-Programme
- Assessment-Center und Management-Audits
- Teamarbeit, Teamentwicklung und Teamrollen
- Coaching als Instrument moderner Führung
- Interkulturelle Kompetenz und cross-cultural leadership
- Führung und Ethik, Corporate Governance
- Praxisübungen und -beispiele zur Vertiefung ausgewählter Inhalte

Organisatorisches

Die Vorlesung wird in diesem Semester nicht angeboten.

Vorlesungsanmeldung und Informationen zur Veranstaltung werden im ILIAS Kurs zur Verfügung gestellt.

Weitere Information siehe IPEK-Homepage

Literaturhinweise

Vorlesungsumdruck

Ingenieurgymnasik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
3.162 Teilleistung: Lehr-/Lernkonzepte [T-GEISTSOZ-108353]

Verantwortung: Prof. Dr. Gerd Gidion
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100640 - Didaktik und Methodik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>5012109</th>
<th>Lehr- und Lernkonzepte (IPBSc, IPI, PädBA, eWF)</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Geißler, Gidion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012131</td>
<td>Lernen und Lehren unter den Bedingungen der Digitalisierung und Digitalität (L2D2)</td>
<td>2 SWS</td>
<td>Seminar (S) / Online</td>
<td>Lohner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 7400489 | Lehr-/Lernkonzepte | Lohner, Gidion |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

keine

Empfehlungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Lehr- und Lernkonzepte (IPBSc, IPI, PädBA, eWF)

5012109, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Hauptseminar (HS)

Inhalt

Es gibt viele Möglichkeiten, Lehr- und Lerneinheiten zu konzipieren – didaktisch, methodisch sowie technisch. In diesem Seminar werden die Studierenden darauf vorbereitet, in ihrem zukünftigen Beruf Lehr- und Lernkonzepte zu entwickeln.

Lernziele:
- Die Studierenden können verschiedene methodische Ansätze nachvollziehen und bewerten.
- Die Studierenden können Lernziele definieren, formulieren und evaluieren.
- Die Studierenden können methodisch-didaktische Lerneinheiten arranjieren.
- Die Studierenden können Lerneinheiten methodisch-didaktisch bewerten und begründen.

Literatur:
- Literatur wird themenweise im ILIAS-Kurs bereitgestellt.

Voraussetzung für Leistungsnachweis:
- Regelmäßige und aktive Teilnahme, Einreichen oder Präsentieren von Aufgaben
- Zusätzlich für die Modulprüfung: das Zusammenführen des Gelernten in einer kurzen Semesterarbeit.

Organisatorisches

Aktuelle Informationen und Anmeldung ab 01.10. unter https://ilias.studium.kit.edu

V Lernen und Lehren unter den Bedingungen der Digitalisierung und Digitalität (L2D2)

5012131, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Seminar (S) Online
Inhalt
Lernen und Lehren unter den Bedingungen der Digitalisierung und Digitalität

#L2D2

Organisatorisches
Parallelkurs Mo und Mi, jeweils 10-11 Uhr, Gruppen werden im Seminar eingeteilt
Eröffnungssitzung und Gruppeneinteilung am Mittwoch, 20.10. um 10:00 Uhr online (Zoom-Link in ILIAS).
Aktuelle Informationen und Anmeldung 01.10. unter https://ilias.studium.kit.edu
3.163 Teilleistung: Lehrlabor: Energietechnik [T-MACH-105331]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
 Prof. Dr. Ulrich Maas
 Dr.-Ing. Heinrich Wirbser

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
 KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
 M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Leistungsort</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2171487 Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Praktikum (P) /</td>
<td>Bauer, Maas, Bykov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2171487 Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Praktikum (P) /</td>
<td>Bauer, Maas, Bykov</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Prüfungseinrichtung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105331 Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105331 Lehrlabor: Energietechnik</td>
<td>3 SWS</td>
<td>Bauer, Maas, Wirbser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕐 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

1 Protokoll, à 12 Seiten

Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Lehrlabor: Energietechnik

2171487, WS 21/22, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz
Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:

- Modellgasturbine
- Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen.
- Optimierung von Komponenten des internen Luft- und Ölsystems
- Sprühstrahlcharakterisierung von Zerstäuberdüsen
- Untersuchung von Schadstoff-emissionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
- Abgasnachbehandlung
 - Abgas-Turbolader
 - Kühlturn
 - Wärmepumpe
 - Pflanzenölkocher
 - Wärmekapazität
 - Holzverbrennung

Präsenzzeit: 42h
Selbststudium: 78h

Durch die Teilnahme an der Veranstaltung sollen Studierende:

- in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
- erhaltene Daten korrekt auswerten
- Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, à 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten

Hilfsmittel: keine

Organisatorisches
Praktika finden in Präsenz statt, sofern die COVID-Inzidenzwerte es zulassen.
Inhalt
Information auf Internetseite des Instituts; Anmeldung erfolgt online.
Anmeldung innerhalb der ersten beiden Wochen der Vorlesungszeit auf der Institutshomepage: http://www.its.kit.edu

Lehrinhalt:

- Modellgasturbine
- Verschiedene Messstrecken zur Untersuchung des Wärmeübergangs an thermische hochbelasteten Bauteilen.
- Optimierung von Komponenten des internen Luft- und Ölsystems
- Sprühstrahlcharakterisierung von Zerstäuberdüsen
- Untersuchung von Schadstoff-emissionen, Lärmemissionen, Zuverlässigkeit und Material-schädigung in Brennkammern
- Abgasnachbehandlung
 - Abgas-Turbolader
 - Kühlturn
 - Wärmepumpe
 - Pflanzenölkocher
 - Wärmekapazität
 - Holzverbrennung

Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudium: 78h

Lernziele:
Durch die Teilnahme an der Veranstaltung sollen Studierende:

- in einem wissenschaftlichen Rahmen sowohl experimentelle und konstruktive, als auch theoretische Aufgaben bearbeiten können
- erhaltene Daten korrekt auswerten
- Ergebnisse dokumentieren und im wissenschaftlichen Kontext darstellen

Nachweis:
1 Protokoll, à 12 Seiten
Diskussion der dokumentierten Ergebnisse mit den betreuenden wiss. Mitarbeitern

Dauer: 30 Minuten

Hilfsmittel: keine

Organisatorisches
Information zum Lehrlabor finden Sie auf der Instituts-homepage
3.164 Teilleistung: Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis [T-MACH-110954]

Verantwortung: Dr.-Ing. Luise Kärger
Dr.-Ing. Wilfried Liebig

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102618 - Schwerpunkt: Produktionstechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>SWS</th>
<th>Format</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2113110</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Kärger, Liebig</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>Liebig, Kärger</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110954</td>
<td>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</td>
<td>Liebig, Kärger</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 25 Minuten)

Voraussetzungen
keine

Empfehlungen
- Werkstoffe für den Leichtbau
- Strukturberechnung von Faserverbundlaminaten
- Faserverstärkte Kunststoffe - Polymere, Fasern, Halbzeuge, Verarbeitung

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Leichtbau mit Faser-Verbund-Kunststoffen – Theorie und Praxis</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2113110, WS 21/22, 4 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Ingenieurnpadagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Inhalt

- Grundlagen Leichtbaustrategien
- Grundlagen Faser-Verbund-Kunststoffe
- Grundlagen FEM-Simulation mit nicht-isotropen Multimaterialsystemen
- Simulative Bauteilbetrachtung
- Fertigung von Faser-Verbund-Kunststoffen
- Mechanische Prüfung

Organisatorisches
Die Veranstaltung findet Mittwochs von 14:00 - 17:00 Uhr statt - Die Raumbelegung wird zu Beginn des Wintersemesters bekannt gegeben
3.165 Teilleistung: Leistungselektronik [T-ETIT-100801]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100533 - Leistungselektronik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>Leistungselektronik</td>
<td>2</td>
<td>Vorlesung (V) / 🛑</td>
<td>Hiller</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Übungen zu 2306320 Leistungselektronik</td>
<td>1</td>
<td>Übung (Ü) / 🛑</td>
<td>Hiller, Frank, Sommer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Leistungselektronik</td>
<td>Hiller</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Leistungselektronik</td>
<td>Hiller</td>
</tr>
</tbody>
</table>

Legende: 🛑 Online, 🛑 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

Keine

Empfehlungen

3.166 Teilleistung: Lernfabrik Globale Produktion [T-MACH-105783]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>4</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2149612 | Lernfabrik Globale Produktion | 4 SWS | Seminar / Praktikum (S/P) / 🧩 | Lanza |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105783 | Lernfabrik Globale Produktion | Lanza |
| SS 2022 | 76-T-MACH-105783 | Lernfabrik Globale Produktion | Lanza |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet):

- Wissenserwerb im Rahmen des Seminars (4 Leistungsabfragen je 20 min) mit Gewichtung 40%
- Interaktion zwischen den Teilnehmern mit Gewichtung 15%
- Wissenschaftliches Kolloquium (in Gruppen mit je 3 Studierenden ca. 45 min) mit Gewichtung 45%

Voraussetzungen

keine

Anmerkungen

Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung auf 20 Teilnehmer begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Die Bewerbung erfolgt über die Homepage des wbk (http://www.wbk.kit.edu/lernfabrik.php)

Aufgrund der begrenzten Teilnehmerzahl ist eine Voranmeldung erforderlich.

Die Studierenden sollten Vorkenntnisse in mindestens einem der folgenden Bereiche haben:

- Integrierte Produktionsplanung
- Globale Produktion und Logistik
- Qualitätsmanagement

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
3 TEILLEISTUNGEN

Teilleistung: Lernfabrik Globale Produktion [T-MACH-105783]

Inhalt

Inhaltliche Schwerpunkte der Vorlesung:

- Standortwahl
- Standortgerechte Fabrikplanung
- Standortgerechte Qualitätssicherung
- Skalierbare Automatisierung
- Lieferantenauswahl
- Netzwerkplanung

Lernziele:

Die Studierenden können …

- Standortalternativen mittels geeigneter Methoden und Vorgehensweisen bewerten und auswählen.
- Methoden und Werkzeuge des Lean Management anwenden, um standortgerechte Produktionssysteme zu planen und steuern.
- die Six-Sigma Systematik gezielt einsetzen und sind zu einem zielführenden Prozessmanagement befähigt.
- über einen geeigneten Automatisierungsgrad der Produktionsanlagen anhand quantitativer Größen entscheiden.
- etablierte Methoden zur Bewertung und Auswahl von Lieferanten anwenden.
- abhängig von unternehmensspezifischen Gegebenheiten Methoden zur Planung globaler Produktionsnetzwerke anwenden, ein geeignetes Netzwerk skizzieren und anhand spezifischer Kriterien klassifizieren und bewerten.
- die erlernten Methoden und Ansätze zur Problemlösung in einem globalen Produktionsumfeld anwenden und deren Wirksamkeit reflekttieren.

Arbeitsaufwand:

e-Learning: ~ 24 h
Präsenzzeit: ~ 36 h
Selbststudium: ~ 60 h

Organisatorisches

Termine werden über die Institutshomepage bekanntgegeben.

Aus organisatorischen Gründen ist die Teilnehmerzahl für die Lehrveranstaltung auf 20 Teilnehmer begrenzt. Infolgedessen wird ein Auswahlprozess stattfinden. Die Bewerbung erfolgt über die Homepage des wbk (http://www.wbk.kit.edu/studium-und-lehre.php)

Aufgrund der begrenzten Teilnehmerzahl ist eine Voranmeldung erforderlich.

Die Studierenden sollten Vorkenntnisse in mindestens einem der folgenden Bereiche haben:

- Integrierte Produktionsplanung
- Globale Produktion und Logistik
- Qualitätsmanagement

For organisational reasons, the number of participants for the course is limited to 20. As a result, a selection process will take place. Applications must be submitted via the wbk homepage (http://www.wbk.kit.edu/studium-und-lehre.php).

Due to the limited number of participants, advance registration is required.

Students should have previous knowledge in at least one of the following areas:

- Integrated Production Planning
- Global Production and Logistics
- Quality Management
Literaturhinweise

Medien:

Media:
E-learning platform ilias, powerpoint, photo protocol. The media are provided through ilias (https://ilias.studium.kit.edu/).
3.167 Teilleistung: Lineare Elektrische Netze [T-ETIT-109316]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104519 - Lineare Elektrische Netze

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2305256</td>
<td>Lineare elektrische Netze</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Dössel</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2305258</td>
<td>Übungen zu 2305256 Lineare elektrische Netze</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Brenneisen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7305256</td>
<td>Lineare Elektrische Netze</td>
<td></td>
<td></td>
<td>Dössel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7305256</td>
<td>Lineare Elektrische Netze</td>
<td>Dössel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7305256</td>
<td>Lineare Elektrische Netze</td>
<td>Dössel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer schriftlichen Gesamtprüfung (120 Minuten).

Voraussetzungen
keine

Verantwortung: Prof. Dr.-Ing. Thomas Leibfried
Prof. Dr. Ulrich Lemmer

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-104519 - Lineare Elektrische Netze

Lehrveranstaltungen

| WS 21/22 | 2307905 | Lineare Elektrische Netze - Workshop A | 1 SWS | Praktikum (P) | Lemmer, Leibfried |

Prüfungsveranstaltungen

| WS 21/22 | 7307317 | Lineare Elektrische Netze - Workshop A | | |

Erfolgskontrolle(n)
schriftlichen Ausarbeitung zu Lehrveranstaltung Lineare Elektrische Netze – Workshop A, (1 LP)

Voraussetzungen
keine
3.169 Teilleistung: Lineare Elektrische Netze - Workshop B [T-ETIT-109811]

Verantwortung: Prof. Dr. Olaf Dössel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104519 - Lineare Elektrische Netze

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2305906 | Lineare Elektrische Netze - Workshop B | 1 SWS | Praktikum (P) | Dössel |

Prüfungsveranstaltungen

| WS 21/22 | 7305901 | Lineare Elektrische Netze - Workshop B | Dössel |

Erfolgskontrolle(n)

schriftlichen Ausarbeitung zu Lehrveranstaltung Lineare Elektrische Netze – Workshop B, (1 LP)

Voraussetzungen

keine
3.170 Teilleistung: Machine Vision [T-MACH-105223]

Verantwortung: Dr. Martin Lauer
Prof. Dr.-Ing. Christoph Stiller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltnamen</th>
<th>SWS</th>
<th>Prüfungsmethode</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2137308</td>
<td>Machine Vision</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ) / Online</td>
<td>Lauer, Kinzig</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsnamen</th>
<th>SWS</th>
<th>Prüfungsmethode</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ) / Online</td>
<td>Stiller, Lauer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105223</td>
<td>Machine Vision</td>
<td>4</td>
<td>Vorlesung / Übung (VÜ) / Online</td>
<td>Stiller, Lauer</td>
</tr>
</tbody>
</table>

Legende: 📚 Online, 🎨 Präsenz/Online gemischt, 🎨 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Art der Prüfung: schriftliche Prüfung
Dauer der Prüfung: 60 Minuten

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Machine Vision
2137308, WS 21/22, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online

Inhalt
Lernziele:

Maschinensehen beschreibt alle Techniken, die verwendet werden können, um Informationen in automatischer Weise aus Kamerabildern zu extrahieren. Erhebliche Fortschritte im Bereich Maschinensehen, z.B. durch das aufkommende tiefe Lernen, haben ein wachsendes Interesse an diesen Techniken in vielen Bereichen geweckt, z.B. im Bereich Robotik, autonomes Fahren, Computerspiele, Produktionsautomatisierung, Sichtprüfung, Medizin, Überwachungssysteme und Augmented Reality. Die Studierenden sollen einen Überblick über wesentliche Methoden des Maschinellen Sehens erhalten und praktisch vertiefen.

Nachweis: schriftlich 60 Minuten
Arbeitsaufwand: 240 Stunden
Voraussetzungen: keine

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.171 Teilleistung: Management und Marketing [T-WIWI-111594]

Verantwortung: Prof. Dr. Martin Klarmann
 Prof. Dr. Hagen Lindstädt
 Prof. Dr. Petra Nieken
 Prof. Dr. Orestis Terzidis

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105768 - Management und Marketing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Vorlesungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2600023</td>
<td>Management</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Nieken, Terzidis</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2610026</td>
<td>Marketing</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Klarmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7900274</td>
<td>Management und Marketing</td>
<td>Nieken, Klarmann, Terzidis</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Marketing

2610026, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Literaturhinweise

Ausführliche Literaturhinweise werden in den Materialien zur Vorlesung gegeben.
3.172 Teilleistung: Maschinen und Prozesse [T-MACH-110993]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von: M-MACH-105450 - Maschinen und Prozesse

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 120 min)

Voraussetzungen
Zur Teilnahme an der Klausur muss vorher das Praktikum T-MACH-110994 erfolgreich absolviert worden sein

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110994 - Maschinen und Prozesse, Vorleistung muss erfolgreich abgeschlossen worden sein.
3.173 Teilleistung: Maschinen und Prozesse, Vorleistung [T-MACH-110994]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von: M-MACH-105450 - Maschinen und Prozesse
Voraussetzung für: T-MACH-110993 - Maschinen und Prozesse

Teilleistungsart Studienleistung
Leistungspunkte 1
Notenskala best./nicht best.
Turnus Jedes Semester
Version 1

Lehrveranstaltungen

| SS 2022 | 2187000 | Maschinen und Prozesse (Praktikum) | 1 SWS | Praktikum (P) / 🗣 | Bauer, Kubach, Maas, Pritz |

Legende: 🖥 Online, 💻 Präsenz/Online gemischt, 🗣 Präsenz, 🗔 Abgesagt

Erfolgskontrolle(n)

erfolgreich absolviert Praktikumsversuch

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinen und Prozesse (Praktikum)
2187000, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz
Inhalt
Nachweis:
erfolgreich absolviert Praktikumsversuch und schriftliche Klausur (2 h)
Zur Teilnahme an der Klausur muss vorher das Praktikum erfolgreich absolviert worden sein

Anmerkung:
Praktikum und Vorlesung finden im Sommer- und Wintersemester statt.
Im SS findet die VL auf englisch statt. Das Praktikum ist immer zweisprachig.

Medien:
Folien zum Download
Dokumentation des Praktikumsversuchs

Lehrinhalte:
Grundlagen der Thermodynamik
Thermische Strömungsmaschinen
 • Dampfturbinen
 • Gasturbinen
 • GuD Kraftwerke
 • Turbinen und Verdichter
 • Flugtriebwerke
Hydraulische Strömungsmaschinen
 • Betriebsverhalten
 • Charakterisierung
 • Regelung
 • Kavitation
 • Windturbinen, Propeller
Verbrennungsmotoren
 • Kenngrößen
 • Konstruktionselemente
 • Kinematik
 • Motorprozesse
 • Emissionen

Arbeitsaufwand: Präsenzzeit: 48 h, Selbststudium 160 h

Lernziele:
Die Studenten können die grundlegenden Energiewandlungsprozesse und ausgeführte energiewandelnde Maschinen benennen und beschreiben. Sie können die Anwendung der Energiewandlungsprozesse in verschiedenen Maschinen erklären. Sie können die Prozesse und Maschinen bezüglich Funktionalität und Effizienz analysieren und beurteilen und einfache technische Fragestellungen zum Betrieb der Maschinen lösen.
3.174 Teilleistung: Maschinendynamik [T-MACH-105210]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstalungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2161224</td>
<td>Maschinendynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2161224</td>
<td>Maschinendynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2161225</td>
<td>Übungen zu Maschinendynamik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Proppe, Fischer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstalungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>1 SWS</td>
<td>Proppe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105210</td>
<td>Maschinendynamik</td>
<td>1 SWS</td>
<td>Proppe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinendynamik

2161224, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt

1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch

Literaturhinweise

Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953

Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979

Dresig, Vulfson: Dynamik der Mechanismen, 1989

Maschinendynamik

2161224, SS 2022, 2 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt

1. Zielsetzung
2. Maschinen als mechatronische Systeme
3. Starre Rotoren: Bewegungsgleichungen, instationäres Anfahren, stationärer Betrieb, Auswuchten (mit Schwingungen)
4. Elastische Rotoren (Lavalrotor, Bewegungsgleichungen, instationärer und stationärer Betrieb, biegekritische Drehzahl, Zusatzeinflüsse), mehrfach und kontinuierlich besetzte Wellen, Auswuchten
5. Dynamik der Hubkolbenmaschine: Kinematik und Bewegungsgleichungen, Massen- und Leistungsausgleich

Course Language: English / Vorlesungssprache: Englisch
Literaturhinweise
Biezeno, Grammel: Technische Dynamik, 2. Aufl., 1953
Holzweißig, Dresig: Lehrbuch der Maschinendynamik, 1979
Dresig, Vulfson: Dynamik der Mechanismen, 1989

Übungen zu Maschinendynamik
2161225, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Übung des Vorlesungsstoffs
Course Language: English / Vorlesungssprache: Englisch
3.175 Teilleistung: Maschinenkonstruktionslehre Grundlagen I und II [T-MACH-110363]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Stunden</th>
<th>Modell</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2145131</td>
<td>Maschinenkonstruktionslehre Grundlagen I</td>
<td>2 SWS</td>
<td>Online, Präsenz/Online gemischt</td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2146131</td>
<td>Maschinenkonstruktionslehre Grundlagen II</td>
<td>2 SWS</td>
<td>Präsenz</td>
<td>Albers, Matthiesen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>Modell</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-104739</td>
<td>Maschinenkonstruktionslehre Grundlagen I und II</td>
<td></td>
<td>Albers, Matthiesen</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-104739</td>
<td>Maschinenkonstruktionslehre Grundlagen I und II</td>
<td></td>
<td>Matthiesen, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Klausur (90min) über die Inhalte von MKLGI und MKLGII.

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Maschinenkonstruktionslehre Grundlagen I

2145131, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz

Literaturhinweise

Vorlesungsanordnung: Der Umdruck zur Vorlesung kann über die eLearning-Plattform Ilias bezogen werden.

Literatur:

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
opter Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

Maschinenkonstruktionslehre Grundlagen II

2146131, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz
Inhalt
Gestaltung
Dimensionierung
Bauteilverbindungen
Schauben
Begleitend zur Vorlesung finden Übungen zur Vertiefung der Vorlesungsinhalte statt.

Vorleistung:
Studiengang MIT:

Studiengang CIW/ VT/ IP-M/ WiING / MATH/ MWT
Vorlesungsbegleitend müssen die Studierenden das Wissen aus MKL I und II an einer Konstruktionsaufgabe anwenden. Diese wird abschließend bewertet und muss für die erfolgreiche Teilnahme bestanden werden.

Studiengang NWT:
Für Studierende der Fachrichtung NwT ist stattdessen als Studienleistung die Erstellung eines Lehrvideos zur Vermittlung eines technischen Systems als Prüfungsvorleistung zu erbringen.

Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 51 h

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;
oder Volltextzugriff über Uni-Katalog der Universitätsbibliothek
Grundlagen von Maschinenelementen für Antriebsaufgaben;
3.176 Teilleistung: Maschinenkonstruktionslehre Grundlagen I, Vorleistung [T-MACH-110364]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre
Voraussetzung für: T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2145132 | Übungen zu Maschinenkonstruktionslehre Grundlagen I | 1 SWS | Übung (Ü) / 🗣 | Albers, Matthiesen, Mitarbeiter |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-110364 | Maschinenkonstruktionslehre Grundlagen I, Vorleistung | Matthiesen, Albers |

Legende: 🏫 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Zum Bestehen der Vorleistung sind die Anwesenheit bei 3 Workshopsitzungen des MKL1-Getriebeworkshops sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre Grundlagen I

2145132, WS 21/22, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Literaturhinweise

Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
3.177 Teilleistung: Maschinenkonstruktionslehre Grundlagen II, Vorleistung [T-MACH-110365]

Verantwortung: Prof. Dr.-Ing. Sven Matthiesen
Einrichtung: KIT-Fakultät für Maschinenbau
Einrichtung: KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung
Bestandteil von: M-MACH-101299 - Maschinenkonstruktionslehre
Voraussetzung für: T-MACH-110363 - Maschinenkonstruktionslehre Grundlagen I und II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2146132 | Übungen zu Maschinenkonstruktionslehre Grundlagen II | 2 SWS | Übung (Ü) / 🗣 | Albers, Matthiesen, Mitarbeiter |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-102133 | Maschinenkonstruktionslehre Grundlagen II, Vorleistung | Albers, Matthiesen |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

CIW/ VT/ IP-M/ WiING / MATH/ MWT: Zum Bestehen der Vorleistung ist es erforderlich, dass eine Konstruktionsaufgabe als technische Handzeichnung erfolgreich absolviert wird.

MIT: Zum Bestehen der Vorleistung sind die Anwesenheit bei Workshopsitzungen sowie das Bestehen eines Kolloquiums zu Beginn jedes Workshops Voraussetzung.

NWT:
Für Studierende der Fachrichtung NwT ist stattdessen als Studienleistung die Erstellung eines Lehrvideos zur Vermittlung eines technischen Systems als Prüfungsvorleistung zu erbringen

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Maschinenkonstruktionslehre Grundlagen II

<table>
<thead>
<tr>
<th>2146132, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
<th>Übung (Ü)</th>
<th>Präsenz</th>
</tr>
</thead>
</table>

Ingenieurrädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Inhalt
Gestaltung
Dimensionierung
Bauteilverbindungen
Schrauben

Vorleistung:
Studiengang MIT:
Vorlesungsbegleitend werden in einem Workshop mit 3 Projektsitzungen die Studierenden in Gruppen eingeteilt und Ihr Wissen überprüft. Die Anwesenheit in allen 3 Projektsitzungen ist pflichtig und wird kontrolliert. In Kolloquien wird zu Beginn der Projektsitzungen das Wissen aus der Vorlesung abgefragt. Das Bestehen der Kolloquien, sowie die Bearbeitung der Workshopaufgabe ist Voraussetzung für die erfolgreiche Teilnahme.

Studiengang CIW/ VT/ IP-M/ WiING / MATH/ MWT
Vorlesungsbegleitend müssen die Studierenden das Wissen aus MKL I und II an einer Konstruktionsaufgabe anwenden. Diese wird abschließend bewertet und muss für die erfolgreiche Teilnahme bestanden werden.

Studiengang NWT:
Für Studierende der Fachrichtung NwT ist statt dessen als Studienleistung die Erstellung eines Lehrvideos zur Vermittlung eines technischen Systems als Prüfungsvorleistung zu erbringen

Arbeitsaufwand:
MIT:
Präsenzzeit: 18 h
Selbststudium: 30 h

CIW/ VT/ IP-M/ WiING / NWT/ MATH/ MWT
Präsenzzeit: 10,5 h
Selbststudium: 37,5h

Literaturhinweise
Konstruktionselemente des Maschinenbaus - 1 und 2
Grundlagen der Berechnung und Gestaltung von Maschinenelementen;

Grundlagen von Maschinenelementen für Antriebsaufgaben;
Steinhilper, Sauer, Springer Verlag, ISBN 3-540-29629-8

CAD:
Pro/Engineer Tipps und Techniken, Wolfgang Berg, Hanser Verlag, ISBN: 3-446-22711-3 (für Fortgeschrittene)
3.178 Teilleistung: Materialfluss in Logistiksystemen [T-MACH-102151]

Verantwortung: Prof. Dr.-Ing. Kai Furmans
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte 9
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 3

Lehrveranstaltungen
WS 21/22 2117051 Materialfluss in Logistiksystemen (mach und wiwi) 15 SWS Sonstige (sonst.) Furmans, Klein, Fleischmann

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-102151 Materialfluss in Logistiksystemen Furmans
SS 2022 76-T-MACH-102151 Materialfluss in Logistiksystemen Furmans

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:

- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet):
 - 40% Bewertung der Fallstudienlösungen als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Fallstudienkolloquien als Einzelleistung.

Eine detaillierte Beschreibung der Erfolgskontrolle findet sich unter Anmerkungen.

Voraussetzungen
keine

Empfehlungen
Empfohlenes Wahlpflichtfach: Wahrscheinlichkeitstheorie und Statistik

Anmerkungen

Nach Ende der Vorlesungszeit findet die Abschlussfallstudie statt. Diese umfasst den gesamten Semesterinhalt und wird von den Studierenden in Einzelarbeit an einem vorgegebenen Präsenztermin mit zeitlicher Begrenzung (4h) gelöst.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Materialfluss in Logistiksystemen (mach und wiwi)
2117051, WS 21/22, 15 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Sonstige (sonst.)
Inhalt
Lehrinhalte:
- Materialflusselemente (Förderstrecke, Verzweigung, Zusammenführung)
- Beschreibung vernetzter MF-Modelle mit Graphen, Matrizen etc.
- Warteschlangentheorie: Berechnung von Wartezeiten, Auslastungsgraden etc.
- Lagern und Kommissionieren
- Shuttle-Systeme
- Sorter
- Simulation
- Verfügbarkeitsrechnung
- Wertstromanalyse

Lernziele:
Nach erfolgreichem Abschluss der Lehrveranstaltung können Sie alleine und im Team:
- In einem Gespräch mit Fachkundigen ein Materialflusssystem zutreffend beschreiben.
- Die Systemlast und die typischen Materialflusselemente modellieren und parametrieren.
- Daraus ein Materialflusssystem für eine Aufgabe konzipieren.
- Die Leistungsfähigkeit einer Anlage in Bezug auf die Anforderungen qualifiziert beurteilen.
- Die wichtigsten Stellhebel zur Beeinflussung der Leistungsfähigkeit gezielt verändern.
- Die Grenzen der heutigen Methoden und Systemkomponenten konzeptionell bei Bedarf erweitern.

Literatur:
Arnold, Dieter; Furmans, Kai: Materialfluss in Logistiksystemen; Springer-Verlag Berlin Heidelberg, 7. Auflage 2019

Beschreibung:
Die Veranstaltung unterteilt sich in 5 Themenblöcke, die sich jeweils in folgende Phasen und Terminen gliedern:
- Selbststudium
- Übung
- Plenary
- Bearbeitung Fallstudie (Gruppenarbeit)
- Kolloquium
- Besprechung Fallstudie

Nach Ende der Vorlesungszeit findet die Abschlussfallstudie statt. Diese umfasst den gesamten Semesterinhalt und wird von den Studierenden in Einzelarbeit an einem vorgegebenen Präsenztermin mit zeitlicher Begrenzung (4h) gelöst.

Es wird dringend empfohlen die Einführungsveranstaltung in der ersten Vorlesungswoche (20.10.2021) zu besuchen. Wir stellen zu diesem Termin das Konzept vor und wollen offene Fragen klären.

Arbeitsaufwand:
- Präsenzzeit: 35 h
- Selbststudium: 135 h
- Gruppenarbeit: 100 h

Nachweis:
Die Erfolgskontrolle erfolgt in Form einer Prüfungsleistung anderer Art. Diese setzt sich wie folgt zusammen:
- 40% Bewertung der Abschlussfallstudie als Einzelleistung,
- 60% Bewertung der Semesterleistung aus Bearbeitung und Verteidigung von 5 Fallstudien (Es werden jeweils die besten 4 aus 5 Leistungen gewertet.):
 - 40% Bewertung der Fallstudienlösungen und deren Präsentation als Gruppenleistung,
 - 20% Bewertung der mündlichen Leistung in den Kolloquien als Einzelleistung.
Teilleistung: Mathématiques appliquées aux sciences de l'ingénieur [T-MACH-105452]

Verantwortung: Prof. Dr. Jean-Yves Dantan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 5
Notenskala Drittelnoten
Turnus Jedes Semester
Version 1

Lehrveranstaltungen
WS 21/22 2161230 Mathématiques appliquées aux sciences de l'ingénieur 4 SWS Vorlesung / Übung (VÜ) Dantan
SS 2022 2161230 Mathématiques appliquées aux sciences de l'ingénieur 4 SWS Vorlesung / Übung (VÜ) / 🖥 Dantan

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105452 Mathématiques appliquées aux sciences de l'ingénieur Böhike
SS 2022 76-T-MACH-105452 Mathématiques appliquées aux sciences de l'ingénieur Böhike

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathématiques appliquées aux sciences de l'ingénieur
2161230, WS 21/22, 4 SWS, Sprache: Französisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)

Inhalt
Vorlesung in französischer Sprache
1. Blockkurs am KIT:
Grundlagen der Wahrscheinlichkeitstheorie, Grundlagen der Laplace-Transformation
2. Blockkurs an der Arts et Métiers ParisTech, Zentrum Metz, Frankreich:
Anwendung der mathematischen Grundlagen in den Bereichen "Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande". Es ist eine Exkursion zu einem Industriepartner in der Nähe von Metz geplant.

Cours en français
1. Cours donné au KIT:
les bases de la théorie de la probabilité et de la transformée de Laplace
2. Cours donné aux Arts et Métiers ParisTech, Centre Metz, France :
Application des bases mathématiques dans le domaine de Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande. Une visite d'entreprise proche de Metz est planifiée.

Organisatorisches
Termine werden auf der Homepage bekannt gegeben

Mathématiques appliquées aux sciences de l'ingénieur
2161230, SS 2022, 4 SWS, Sprache: Französisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online
Inhalt
Für Ingenieure, Physiker, Masch.bauer, in franz. Sprache auch als fremdsprachl. Wahlfach für mach zugelassen.

Vorlesung in französischer Sprache
1. Blockkurs am KIT:
Grundlagen der Wahrscheinlichkeitstheorie, Grundlagen der Laplace-Transformation
2. Blockkurs an der Arts et Métiers ParisTech, Zentrum Metz, Frankreich:
Anwendung der mathematischen Grundlagen in den Bereichen "Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande". Es ist eine Exkursion zu einem Industriepartner in der Nähe von Metz geplant.

Cours en français
1. Cours donné au KIT:
les bases de la théorie de la probabilité et de la transformée de Laplace
2. Cours donné aux Arts et Métiers ParisTech, Centre Metz, France:
Application des bases mathématiques dans le domaine de Sureté de fonctionnement, Conception fiabiliste - Analyse des risques, Vibrations et Commande. Une visite d'entreprise proche de Metz est planifiée.

Organisatorisches
S. Aushang am Institut bzw. Informationen auf der website.
3.180 Teilleistung: Mathematische Methoden der Dynamik [T-MACH-105293]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungs- und Übungskennzahl</th>
<th>Modulbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Prüfung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2161206</td>
<td>Mathematische Methoden der Dynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2161207</td>
<td>Übungen zu Mathematische Methoden der Dynamik</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Proppe, Oestringer</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2161206</td>
<td>Mathematische Methoden der Dynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungs- und Übungskennzahl</th>
<th>Modulbezeichnung</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Proppe</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105293</td>
<td>Mathematische Methoden der Dynamik</td>
<td>Proppe</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Mathematische Methoden der Dynamik

2161206, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)

Online

Inhalt

Dynamik der Kontinua: Kontinuumsbegriff, Geometrie der Kontinua, Kinematik und Kinetik der Kontinua
Dynamik des starren Körpers: Kinematik und Kinetik des starren Körpers
Analytische Methoden: Prinzip der virtuellen Arbeit, Variationsrechnung, Prinzip von Hamilton
Approximationsmethoden: Methoden der gewichteten Restes, Ritz-Methode
Anwendungen

Literaturhinweise

Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994
P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000
M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993
Übungen zu Mathematische Methoden der Dynamik
2161207, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt

Inhalt
Übung des Vorlesungsstoffs

Mathematische Methoden der Dynamik
2161206, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Online

Inhalt
Die Studierenden können die mathematischen Methoden der Dynamik zielgerichtet und effizient zur Anwendung bringen. Sie beherrschen die grundlegenden mathematischen Methoden zur Modellbildung für das dynamische Verhalten elastischer und starrer Körper. Die Studierenden besitzen ein grundsätzliches Verständnis für die Darstellung der Kinematik und Kinetik elastischer und starrer Körper, für die alternativen Formulierungen auf der Basis von schwachen Formulierungen und Variationsmethoden sowie der Approximationsmethoden zur numerischen Berechnung des Bewegungsverhaltens elastischer Körper.

Analytische Methoden: Prinzip der virtuellen Arbeit, Variationsrechnung, Prinzip von Hamilton

Approximationsmethoden: Methoden des gewichteten Restes, Ritz-Methode

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)

J.E. Marsden, T.J.R. Hughes: Mathematical foundations of elasticity, New York, Dover, 1994

P. Haupt: Continuum mechanics and theory of materials, Berlin, Heidelberg, 2000

M. Riemer: Technische Kontinuumsmechanik, Mannheim, 1993

3.181 Teilleistung: Mathematische Methoden der Kontinuumsmechanik [T-MACH-110375]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsveranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22 161254</td>
<td>Mathematische Methoden der Kontinuumsmechanik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / Böhlke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-110375 Mathematische Methoden der Kontinuumsmechanik Böhlke

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (90 min). Hilfsmittel gemäß Ankündigung
Klausurzulassung: bestandene Studienleistung Übung zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Voraussetzungen
bestandene Studienleistung Übungen zu Mathematische Methoden der Kontinuumsmechanik (T-MACH-110376)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Kontinuumsmechanik

2161254, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
Tensoralgebra

- Vektoren; Basistransformation; dyadisches Produkt; Tensoren 2. Stufe
- Eigenschaften von Tensoren 2. Stufe: Symmetrie, Antimetrie, Orthogonalität etc.
- Eigenwertproblem, Theorem von Cayley-Hamilton, Invarianten; Tensoren höherer Stufe Tensoranalyse
- Tensoralgebra und -analyse in schiefwinkligen und krummlinigen Koordinatensystemen
- Differentiation von Tensorfunktionen

Anwendungen der Tensorrechnung in der Festigkeitslehre

- Kinematik infinitesimaler und finiter Deformationen
- Transporttheorem, Bilanzgleichungen, Spannungstensor
- Materialgleichungen für Festkörper und Fluide
- Formulierung von Anfangs-Randwertproblemen
- Materialgleichungen für Festkörper und Fluide

Literaturhinweise
Vorlesungsskript
Schade, H: Strömungslehre, de Gruyter 2013
3.182 Teilleistung: Mathematische Methoden der Schwingungslehre [T-MACH-105294]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2162241</th>
<th>Mathematische Methoden der Schwingungslehre</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2162242</td>
<td>Übungen zu Mathematische Methoden der Schwingungslehre</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Fidlin, Burgert</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105294</th>
<th>Mathematische Methoden der Schwingungslehre</th>
<th>Seemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105294</td>
<td>Mathematische Methoden der Schwingungslehre</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- schriftliche Prüfung, 180 min.

Voraussetzungen

- keine

Empfehlungen

- Technische Mechanik III/IV

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Schwingungslehre

2162241, SS 2022, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

- Lineare, zeitinvariante, gewöhnliche Einzeldifferentialgleichungen: homogene Lösung, harmonische periodische und nichtperiodische Anregung, Faltungsintegral, Fourier- und Laplacetransformation, Einführung in die Distributionstheorie; Systeme gewöhnlicher Differentialgleichungen: Matrixschreibweise, Eigenwerttheorie, Fundamentalmatrix; fremderregte Systeme mittels Modalentwicklung und Transitionsmatrix; Einführung in die Stabilitätslehre; Partielle Differentialgleichungen: Produktsatz, Eigenwertproblem, gemischter Ritz-Ansatz; Variationsrechnung mit Prinzip von Hamilton; Störungsrechnung

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik

Übungen zu Mathematische Methoden der Schwingungslehre

2162242, SS 2022, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

- Sieben vorgerechnete Übungen mit Beispielen zum Vorlesungsstoff

Literaturhinweise

Riemer, Wedig, Wauer: Mathematische Methoden der Technischen Mechanik
3.183 Teilleistung: Mathematische Methoden der Strömungslehre [T-MACH-105295]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte 6

Notenskala Drittelnoten

Turnus Jedes Sommersemester

Version 1

Lehrveranstaltungen
SS 2022 2154432 Mathematische Methoden der Strömungslehre 2 SWS Vorlesung (V) / 🧩 Frohnapfel, Gatti
SS 2022 2154433 Übungen zu Mathematische Methoden der Strömungslehre 1 SWS Übung (Ü) / 🧩 Frohnapfel
SS 2022 2154540 Mathematical Methods in Fluid Mechanics 2 SWS Vorlesung (V) / 🧩 Gatti, Frohnapfel

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105295 Mathematische Methoden der Strömungslehre Frohnapfel
WS 21/22 76-T-MACH-105295 (engl.) Mathematische Methoden der Strömungslehre Frohnapfel, Gatti
SS 2022 76-T-MACH-105295 Mathematische Methoden der Strömungslehre Frohnapfel, Gatti
SS 2022 76-T-MACH-105295 (engl.) Mathematische Methoden der Strömungslehre (engl.) Frohnapfel

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt.

Erfolgskontrolle(n)
Schriftliche Prüfung - 3 Stunden

Voraussetzungen
keine

Empfehlungen
Allgemeines Grundwissen im Bereich Strömungslehre

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mathematische Methoden der Strömungslehre
2154432, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt
Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfachen numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellanahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:

- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtheorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)
Literaturhinweise

Übungen zu Mathematische Methoden der Strömungslehre

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

In der Übung wird die Auswahl der Vorlesungsthemen vertieft:

- Krummlinige Koordinaten und Tensorrechnung
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)

Literaturhinweise

Mathematical Methods in Fluid Mechanics

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Die Studierenden können die zugrunde liegenden Navier-Stokes-Gleichungen für spezielle Strömungsprobleme vereinfachen. Sie können mathematische Methoden in der Strömungsmechanik zielgerichtet und effizient anwenden, um die resultierenden Erhaltungsgleichungen, wenn möglich, analytisch zu lösen oder sie einer einfachen numerischen Lösung zugänglich zu machen. Sie können die Grenzen der Anwendbarkeit der getroffenen Modellannahmen erläutern.

In der Vorlesung wird eine Auswahl der folgenden Themen behandelt:

- Schleichende Strömungen (Stokes Strömungen)
- Schmierfilmtorie
- Potentialtheorie
- Grenzschichttheorie
- Laminar-turbulente Transition (Lineare Stabilitätstheorie)
- Turbulente Strömungen
- Numerische Lösung der Erhaltungsgleichungen (Finite Differenzen Verfahren)
3.184 Teilleistung: Mathematische Modelle und Methoden für Produktionssysteme [T-MACH-105189]

Verantwortung: Dr.-Ing. Marion Baumann
Prof. Dr.-Ing. Kai Furmans

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Förder- und Logistiksysteme

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung mündlich
Leistungspunkte 6
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen
WS 21/22 2117059 Mathematische Modelle und Methoden für Produktionssysteme 4 SWS Vorlesung (V) / Baumann, Furmans

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105189 Mathematische Modelle und Methoden für Produktionssysteme Furmans
SS 2022 76-T-MACH-105189 Mathematische Modelle und Methoden für Produktionssysteme Furmans

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Prüfung (20 min.) in der vorlesungsfreien Zeit des Semesters nach § 4 Abs. 2 Nr. 2 SPO.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrverstaltungen zu dieser Teilleistung:

Mathematische Modelle und Methoden für Produktionssysteme
V 2117059, WS 21/22, 4 SWS, Sprache: Englisch, im Studierendenportal anzeigen

Inhalt
Medien:
Tafelanschrieb, Skript, Präsentationen

Lehrinhalte:
- Einzelsysteme: M/M/1; M/G/1; Prioritätsregelung, Abbildung von Störungen
- Vernetzte Systeme: Offene und geschlossene Approximationen, exakte Lösungen und Approximationen
- Anwendung auf flexible Fertigungssysteme, FTS-Anlagen
- Modellierung von Steuerungsverfahren (Conwip, Kanban)
- zeitdiskrete Modellierung von Bediensystemen

Lernziele:
Die Studierenden können:
- Warteschlangensysteme mit analytisch lösbaren stochastischen Modellen zu beschreiben.
- Ansätze zur Modellierung und Steuerung von Materialfluss- und Produktionssystemen auf der Grundlage von Modellen der Warteschlangentheorie ableiten,
- Simulationsmodelle und exakte Berechnungsverfahren anzuwenden.

Empfehlungen:
- Statistische Grundkenntnisse und -verständnis
- Empfohlenes Wahlpflichtfach: Stochastik
- Empfohlene Vorlesung: Materialfluss in Logistiksystemen (kann auch parallel gehört werden)

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 198 Stunden
Literaturhinweise
3.185 Teilleistung: Mechanik laminierter Komposite [T-MACH-108717]

Verantwortung: Prof. Dr. Eckart Schnack
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen
<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2161983</th>
<th>Mechanik laminierter Komposite</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Schnack</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen
| WS 21/22 | 76-T-MACH-108717 | Mechanik laminierter Komposite |
| SS 2022 | 76-T-MACH-108717 | Mechanik laminierter Komposite |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen
keine

Anmerkungen
Das Vorlesungsskript wird über ILIAS bereitgestellt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mechanik laminierter Komposite
2161983, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches
Beginn ab 09.11.2021
3.186 Teilleistung: Messtechnik [T-ETIT-101937]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102652 - Messtechnik

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 5
Noten­skala Drittelnoten
Turnus Jedes Wintersemester
Version 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>WS 21/22</th>
<th>2302105</th>
<th>Messtechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Heizmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2302107</td>
<td>Übungen zu 2302105 Messtechnik</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>WS 21/22</th>
<th>7302105</th>
<th>Messtechnik</th>
<th>Heizmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7302105</td>
<td>Messtechnik</td>
<td>Heizmann</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
keine

Empfehlungen
Die Inhalte der Module "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" werden benötigt.
3.187 Teilleistung: Messtechnik II [T-MACH-105335]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messtechnik II</td>
<td>Vorlesung (V) / 🗣</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2138326 | Messtechnik II | 2 SWS | Vorlesung (V) / 🗣 | Stiller, Bieder |

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105335</th>
<th>Messtechnik II</th>
<th>Stiller</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105335</td>
<td>Messtechnik II</td>
<td>Stiller</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung
60 Minuten
Selbstverfasste Formelsammlung über 2 DIN A4 erlaubt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Messtechnik II
2138326, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Lerninhalt:

1. Signalverstärker
2. Digitale Schaltungstechnik
3. Stochastische Modellierung in der Messtechnik
4. Stochastische Schätzverfahren
5. Kalman-Filter
6. Umfeldwahrnehmung

Lernziele:
Die wachsende Leistungsfähigkeit der Messtechnik eröffnet Ingenieuren laufend innovative Anwendungsfelder. Dabei kommen digitalen Messverfahren eine wachsende Bedeutung zu, da sie gerade für komplexe Aufgaben eine hohe Leistungsfähigkeit bieten. Stochastische Modelle des Messaufbaus und der Messgrößenentstehung sind Grundlage für aussagekräftige Informationsverarbeitung und bilden zunehmend ein unverzichtbares Handwerkszeug des Ingenieurs, nicht nur in der Messtechnik.

Nachweis:
Schriftlich
Dauer: 60 Minuten

Eigene Formelsammlung

Arbeitsaufwand:
120 Stunden

Literaturhinweise
Skript und Foliensatz zur Veranstaltung werden als kostenlose pdf-Dateien bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.

Ideenweise haben Sie zuvor ‘Grundlagen der Mess- und Regelungstechnik’ gehört oder verfügen aus einer Vorlesung anderer Fakultäten über grundlegende Kenntnisse der Mess- und Regelungstechnik und der Systemtheorie.
3.188 Teilleistung: Methoden zur Analyse der motorischen Verbrennung [T-MACH-105167]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Jürgen Pfeil

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 2134134 Methoden zur Analyse der motorischen Verbrennung 2 SWS Vorlesung (V) / 🧩 Pfeil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 76-T-MACH-105167 Methoden zur Analyse der motorischen Verbrennung Koch</td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-105167 Methoden zur Analyse der motorischen Verbrennung Koch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Methoden zur Analyse der motorischen Verbrennung
2134134, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Literaturhinweise
Skript, erhältlich in der Vorlesung
3.189 Teilleistung: Microenergy Technologies [T-MACH-105557]

Verantwortung: Prof. Dr. Manfred Kohl
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2142897 | Microenergy Technologies | 2 SWS | Vorlesung (V) / 📧 Kohl |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105557 | Microenergy Technologies | Kohl |
| SS 2022 | 76-T-MACH-105557 | Microenergy Technologies | Kohl |

Legende: 🖥 Online, 📧 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (30 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Microenergy Technologies

2142897, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

- Physikalische Grundlagen der Prinzipien zur Energiewandlung
- Layout und Designoptimierung
- Technologien
- ausgewählte Bauelemente
- Anwendungen

Die Vorlesung beinhaltet unter anderem folgende Themen:

- Mikro-Energy Harvesting von Schwingungen
- Thermisches Mikro-Energy Harvesting
- Mikrotechnische Anwendungen von Energy Harvesting
- Wärmepumpen in der Mikrotechnik
- Mikrokühlen

Literaturhinweise

- Folienskript "Micro Energy Technologies"
3.190 Teilleistung: Mikrostruktursimulation [T-MACH-105303]

| Verantwortung: | Dr. Anastasia August
| | Prof. Dr. Britta Nestler |
| Einrichtung: | KIT-Fakultät für Maschinenbau
| | KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science |
| Bestandteil von: | M-MACH-102746 - Wahlpflichtmodul |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>5</td>
</tr>
<tr>
<td>Notenskala</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2183702</td>
<td>3 SWS</td>
<td>August, Nestler</td>
</tr>
<tr>
<td>Mikrostruktursimulation</td>
<td>(VÜ) / 🖥</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105303</td>
<td></td>
<td>August, Weygand, Nestler</td>
</tr>
<tr>
<td>Mikrostruktursimulation</td>
<td>Jedes Wintersemester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105303</td>
<td></td>
<td>August, Nestler, Weygand</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 30 min

Voraussetzungen
keine

Empfehlungen
Werkstoffkunde
mathematische Grundlagen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Mikrostruktursimulation
2183702, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Online
Inhalt

• Einige Grundlagen der Thermodynamik
• Statistische Interpretation der Entropie
• Gibb'sche Freie Energie und Phasendiagramme
• Freie Energie-Funktional für reine Stoffe
• Phasen-Feld-Gleichung
• Gibbs-Thomson-Gleichung
• Treibende Kräfte
• Großkannonische Potential Funktional und die Evolutionsgleichungen
• Zum Vergleich: Das Freie Energie-Funktional mit treibenden Kräften

Der/die Studierende

• kann die thermodynamischen und statistischen Grundlagen für flüssig-fest und fest-fest Phasenumwandlungsprozess erläutern und zur Konstruktion von Phasendiagrammen anwenden
• kann die spezifischen Eigenschaften dendritischer, eutektischer und peritektischer Mikrostrukturen beschreiben
• kann Mechanismen zur Bewegung von Korn- und Phasengrenzen durch äußere Felder erläutern
• kann mit Hilfe der Phasenfeldmodellierung die Entwicklung von Mikrostrukturen simulieren und verwendet dabei Modellierungsansätze aus der aktuellen Forschung
• verfügt durch Rechnerübungen über Erfahrungen in der Implementierung von Phasenfeldmodellen und kann eigene Simulationen von Mikrostrukturausbildungen durchführen

Kenntnisse in Werkstoffkunde und mathematische Grundlagen empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Die individuellen Lösungswege werden korrigiert zurückgegeben. mündliche Prüfung ca. 30 min

Literaturhinweise

4. Gaskell, D.R., Introduction to the thermodynamics of materials
5. Übungsblätter
3.191 Teilleistung: Mikrosystemtechnik [T-ETIT-100752]

Verantwortung: Prof. Dr. Wilhelm Stork
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100454 - Mikrosystemtechnik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung mündlich

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>WS/SS</th>
<th>Vorlesung (V)</th>
<th>Prüfung (P)</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2311625</td>
<td>Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🕵️‍♂️</td>
<td>Stork</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7311625</td>
<td>Mikrosystemtechnik</td>
<td>2 SWS</td>
<td>Stork</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🕵️‍♂️ Online, 🤷‍♂️ Präsenz/Online gemischt, 🗣️ Präsenz, ✻ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Prüfung (ca. 20 Minuten).

Voraussetzungen
keine
3.192 Teilleistung: Mobilität und Infrastruktur [T-BGU-101791]

Verantwortung: Prof. Dr.-Ing. Ralf Roos
Prof. Dr.-Ing. Peter Vortisch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-103486 - Mobilität und Infrastruktur

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungsveranstaltung</th>
<th>Studienrichtung</th>
<th>SWS</th>
<th>Form der Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200404 Raumplanung und Planungsrecht</td>
<td>Raumplanung und Planungsrecht</td>
<td>2</td>
<td>Vorlesung (V) / ☭</td>
<td>Wilske</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200405 Übungen zu Raumplanung und Planungsrecht</td>
<td>1</td>
<td>Übung (Ü) / 👫</td>
<td>Wilske, Mitarbeiter/innen</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200406 Verkehrswesen</td>
<td>2</td>
<td>Vorlesung (V) / ☭</td>
<td>Vortisch</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200407 Übungen zu Verkehrswesen</td>
<td>SWS</td>
<td>Übung (Ü) / ☭</td>
<td>Vortisch, Mitarbeiter/innen</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200408 Bemessungsgrundlagen im Straßenwesen</td>
<td>2</td>
<td>Vorlesung (V) / ☭</td>
<td>Roos, Zimmermann</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200409 Übungen zu Bemessungsgrundlagen im Straßenwesen</td>
<td>SWS</td>
<td>Übung (Ü) / ☭</td>
<td>Plachkova-Dzhurova, Zimmermann</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung oder Übung</th>
<th>Studienrichtung</th>
<th>Form der Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8234101791 Mobilität und Infrastruktur</td>
<td>Mobilität und Infrastruktur</td>
<td>Roos</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>8234101791 Mobilität und Infrastruktur</td>
<td>Mobilität und Infrastruktur</td>
<td>Roos</td>
<td></td>
</tr>
</tbody>
</table>

Legende: ☭ Online, ☭ Präsenz/Online gemischt, 👫 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 150 min.

Voraussetzungen

die "Studienarbeiten Verkehrswesen" (T-BGU-106832) und die "Studienarbeiten Straßenwesen" (T-BGU-106833) müssen bestanden sein

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-BGU-106832 - Studienarbeiten Verkehrswesen muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-BGU-106833 - Studienarbeiten Straßenwesen muss erfolgreich abgeschlossen worden sein.

Empfehlungen

Keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Raumplanung und Planungsrecht

6200404, SS 2022, 2 SWS, Im Studierendenportal anzeigen
Inhalt
Die angebotenen Übungen bereiten auf die schriftliche Prüfung Mobilität und Infrastruktur sowie die Lehrveranstaltungen „Planen - Entwerfen - Konstruieren (PEK)” und „Projekt Integriertes Planen (PIP)” vor.
Die Vorlesung Raumplanung und Planungsrecht ist Teil des Pflichtmoduls Mobilität und Infrastruktur.

Koordination: Klinkhardt, Christian

Übungen zu Raumplanung und Planungsrecht
6200405, SS 2022, 1 SWS, im Studierendenportal anzeigen

Inhalt
Die in der Vorlesung vorgestellten Methoden und Verfahren werden zur Vertiefung der Kenntnisse in verschiedenen Aufgaben angewendet.

Koordination: Klinkhardt, Christian

Verkehrswesen
6200406, SS 2022, 2 SWS, im Studierendenportal anzeigen

Inhalt
Lernziele:
Ein erster zusammenfassender Überblick über das Fach wird in der Veranstaltung Verkehrswesen vermittelt. Es werden die Grundlagen des Fachwissens in den Bereichen Verkehrsplanung und Verkehrstechnik geschaffen.

Inhalt:
Im ersten Teil werden einführende Kenntnisse über die Verkehrsplanung vermittelt:

- Einordnung des Verkehrswesens
- Verkehrszelleneinteilung, Verkehrsnetze, Matrixdarstellung von Verkehrsrelationen
- Verkehrsdatenbeschaffung und Verkehrserhebungen
- Verkehrsentstehung und Zielwahl der Wege
- Verkehrsmittelwahl und Umlegung der Nachfrage auf die Verkehrsnetze

Der zweite Teil befasst sich mit den Grundlagen der Verkehrstechnik:

- Grundlagen des Verkehrsflusses (mikroskopisch und makroskopisch)
- Dimensionierung und Leistungsfähigkeit von nicht-lichtsignalisierten Knotenpunkten
- Grundlagen der Lichtsignalsteuerung und lichtsignalgeregelte Knotenpunkte
- Einblicke in Technologien, wie z. B. Telematik

Koordination: Baumann, Marvin; Reiffer, Anna

Übungen zu Verkehrswesen
6200407, SS 2022, SWS, im Studierendenportal anzeigen

Inhalt
Der gleichzeitige Besuch der Veranstaltung Verkehrswesen wird vorausgesetzt. Die in der Vorlesung Verkehrswesen vorgestellten Methoden und Verfahren werden zur Vertiefung der Kenntnisse in verschiedenen Berechnungsaufgaben angewendet. In der Veranstaltung wird das Vorgehen bei der Anwendung von Methoden und Verfahren vorgestellt. Im Laufe des Semesters sind daraufhin drei Studienarbeiten zu bearbeiten, deren Bestehen für Studierende des Bauingenieurwesens Voraussetzung für die Teilnahme an der schriftlichen Prüfung ist. Für Studierende des Wirtschaftsingenieurwesens im Modul Verkehrssysteme ist die Teilnahme an der Studienarbeit freiwillig.

Koordination: Baumann, Marvin; Reiffer, Anna
3.193 Teilleistung: Modellierung und Simulation [T-MACH-100300]

Verantwortung: Prof. Dr. Peter Gumbsch
 Prof. Dr. Britta Nestler

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 5
Notenskala: Drittelnoten
Turnus: Jedes Semester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Prüfung/Übung (VÜ)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2183703</td>
<td>Modellierung und Simulation</td>
<td>3</td>
<td>Nestler</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2183703</td>
<td>Modellierung und Simulation</td>
<td>2+1</td>
<td>Nestler</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Prüfung/Übung (VÜ)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>Nestler, August</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100300</td>
<td>Modellierung und Simulation</td>
<td>Nestler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧱 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung, 90 min

Voraussetzungen

Keine

Empfehlungen

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Vorlesung / Übung (VÜ)

Modellierung und Simulation

2183703, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Online
Inhalt
Die Vorlesung gibt eine Einführung in Modellierungs- und Simulationsmethoden. Inhalte sind:
- Splines, Interpolationverfahren, Taylorreihe
- Finite Differenzenverfahren
- Dynamische Systeme
- Raum-Zeit-Probleme, Numerik partieller Differentialgleichungen
- Stoff- und Wärmediffusion
- Werkstoffsimulation
- parallele und adaptive Algorithmen
- Hochleistungsrechnen
- Computerpraktikum

Der/die Studierende

- kann grundlegende Algorithmen und numerische Methoden erläutern, die u.a. bei der Werkstoffsimulation eingesetzt werden
- kann numerische Lösungsverfahren für dynamische Systeme und partielle Differentialgleichungen beschreiben und anwenden
- kann Methoden zur numerischen Lösung von Wärme- und Stoffdiffusionsprozessen anwenden, die ebenfalls für die Simulation von Mikrostrukturausbildungen genutzt werden können
- verfügt durch das begleitende Rechnerpraktikum über Erfahrungen mit der Implementierung / Programmierung der erarbeiteten numerischen Verfahren.

Vorkenntnisse in Mathematik, Physik und Werkstoffkunde empfohlen

Präsenzzeit: 22,5 Stunden Vorlesung, 11,5 Stunden Übung
Selbststudium: 116 Stunden

Es werden regelmäßig Übungszettel ausgeteilt. Außerdem wird die Veranstaltung ergänzt durch praktische Übungen am Computer.

Schriftliche Klausur: 90 Minuten

Organisatorisches
Termine für Rechnerübungen werden in der Vorlesung bekannt gegeben!

Literaturhinweise

Vorlesung / Übung (VÜ)
2183703, SS 2022, 2+1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Online
Organisatorisches
Die Termine für die Übungen werden in der Vorlesung und im Ilias bekannt gegeben.

Literaturhinweise

3.194 Teilleistung: Moderne Regelungskonzepte I [T-MACH-105539]

Verantwortung: apl. Prof. Dr. Lutz Groell
apl. Prof. Dr. Jörg Matthes

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2105024 Moderne Regelungskonzepte I 2 SWS Vorlesung (V) / Matthes, Groell
SS 2022 2106020 Übung zu Moderne Regelungskonzepte I 2 SWS Übung (Ü) / Matthes

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105539 Moderne Regelungskonzepte I Matthes
SS 2022 76-T-MACH-105539 Moderne Regelungskonzepte I Matthes

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung (Dauer: 1 h)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Moderne Regelungskonzepte I
2105024, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lehrinhalt:

1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsmethodik für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalttechniken, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freiheitsgrade-Regelungen (Struktur, Sollsignalsignale)
7. Zustandsränder (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorenweiterung
9. Beobachter (LQG-Entwurf, Störgrößenbeobachter, reduzierte Beobachter)

Voraussetzungen:
Der Besuch folgender Vorlesung wird empfohlen::

• Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Literaturhinweise

• Rugh, W.: Linear System Theory. Prentice Hall, 1996

V Übung zu Moderne Regelungskonzepte I
2106020, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Online
Inhalt
Lehrinhalt:

1. Einführung (Abgrenzung, Übersichten)
2. Ruhelagen (Bedeutung, Berechnung, mathematische Tools)
3. Linearisierung (Kleine-Delta-Methode, Hartman-Grobman-Theorem, Entwurfsmethodik für lineare Festwertregler)
4. PID-Regler (praktische Realisierung, Design-Tipps, Anti-Windup-Techniken, Smith-Prädiktor, Umschalttechniken, Komplexbeispiel)
5. Experimentelle Modellbildung (Identifikation für zeitkontinuierliche/zeitdiskrete Modelle)
6. Konzept der Zwei-Freiheitsgrade-Regelungen (Struktur, Sollsignaldesign)
7. Zustandsraum (Transformationen, Normalformen, Systemeigenschaften im Zustandsraum, geometrische Sichtweise)
8. Folgeregelungen mit Zustandsrückführung und Integratorenwiederung
9. Beobachter (LQG-Entwurf, Störgrößenbeobachter, reduzierte Beobachter)

Voraussetzungen:
Der Besuch folgender Vorlesung wird empfohlen::

- Grundlagen der Mess- und Regelungstechnik

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Literaturhinweise

Teilleistung: Moderne Regelungskonzepte II [T-MACH-106691]

Verantwortung: apl. Prof. Dr. Lutz Groell

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbeschriftung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Prüfungsartung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2106032</td>
<td>Moderne Regelungskonzepte II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Groell</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106691</td>
<td>Moderne Regelungskonzepte II</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Groell</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- mündliche Prüfung (Dauer: 30min)

Voraussetzungen:

keine

Inhalt

Lehrinhalt:

1. Zeitdiskrete Systeme
2. Zur Rolle der Nullstellen (Arten von Nullstellen, Nulldynamik, internes Modellprinzip, repetitive Regelungen, 2DoF-Strukturen, Reglerentwurf via diophantischer Gleichung)
3. Grenzen von Regelungen (Existenzfrage, Zeit- und Frequenzbereichsgrenzen)
4. Lineare Mehrgrößensysteme (Zustandsraum inkl. Strukturvarianten, kanonische Formen im Frequenzbereich, Polynommatrizen, Matrizenbrüche)
5. Mehrgrößenregelungen für LTI-Systeme (Koprimfaktorisierung, Relative-Gain-Array-Analyse, dezentrale und kooperative Regelungen, Entkopplungsregelungen, Folgeregelungen)
6. Regelung mit internem Prozessmodell (interne Stabilität, Youla-Parametrisierung, Prädiktorstrukturen, diverse 2DoF-Strukturen)
7. Erweiterte Reglekreissstrukturen (Reihen- und Parallelkaskaden, Multireglerstrukturen, Inferential-Control, Split-Range-Regelungen, Extremwertregelungen)
8. Differentialalgebraische Systeme
9. Lösung und Simulation komplizierter dynamischer Systeme (ODEs, Cauchy-Probleme, Randwertprobleme, PDEs, hybride Systeme, DAES, DDEs, Computeralgebra u.v.m.)
10. Modellreduktion
11. Freies Thema (Je nach Lernfortschritt und Interessensbedarf werden entweder die vorgenannten Themen vertieft oder es werden Themen wie Totzeitsysteme, zeitvariante Systeme, robuste Regelungen, Metriken für dynamische Systeme etc. behandelt.)

Voraussetzungen:

Der Besuch folgender Vorlesungen wird empfohlen:

- Grundlagen der Mess- und Regelungstechnik
- Moderne Regelungskonzepte I

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik
Literaturhinweise

- Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control, 2001
3.196 Teilleistung: Moderne Regelungskonzepte III [T-MACH-106692]

Verantwortung:
apl. Prof. Dr. Lutz Groell

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von:
M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2106035</th>
<th>Moderne Regelungskonzepte III</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🗣️</th>
<th>Groell</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-106692</th>
<th>Moderne Regelungskonzepte III</th>
<th>Groell</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106692</td>
<td>Moderne Regelungskonzepte III</td>
<td>Groell</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣️ Präsenz, X Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (Dauer: 30min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Moderne Regelungskonzepte III

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>2106035, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

Lerninhalt:

1. Qualitative Theorie gewöhnlicher Differentialgleichungen (Erweiterungen des Lösungsbegriffs von ODEs, Bifurkation, Poincaré-Index, Ruhelagen in Unendlich)
2. Lyapunov-Stabilität (Definitionen, Sätze, topologische Eigenschaften der Einzugsbereiche, Barbashin-Krasovskii-LaSalle-Theorem, Barbalat-Lemma)
3. Feedback-Linearisierung
4. Modifikationen der Feedback-Linearisierung (Nulldynamik, flachheitsbasierter Reglerentwurf, erweiterte Linearisierung)
5. Lyapunovbasierter Reglerentwurf (Backstepping-Entwurf, nichtlineare Dämpfung, Folgeregelungen)
6. Passivitätsbasierter Reglerentwurf
7. Sliding-Mode-Regelungen
8. Alternative Linearisierungskonzepte

Voraussetzungen:

Der Besuch folgender Vorlesungen wird empfohlen:

• Grundlagen der Mess- und Regelungstechnik
• Moderne Regelungskonzepte I und II

Alternativ: Vergleichbare Lehrveranstaltungen der Fakultät für Elektrotechnik und Informationstechnik

Organisatorisches

Für die VL ist eine Anmeldung per E-Mail an adam.kastner@kit.edu erforderlich.
3.197 Teilleistung: Modulprüfung Klausur 1 LP [T-GEISTSOZ-103019]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>KIT-Fakultät für Geistes- und Sozialwissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-GEISTSOZ-101577 - Grundlagen der Gemeinschaftskunde</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
1

Notenskala
Drittelnoten

Version
1

Prüfungsveranstaltungen

| SS 2022 | 7400385 | Modulprüfung Klausur 1 LP |

Erfolgskontrolle(n)
Schriftliche Prüfung (Klausur) im Umfang von 90 Minuten mit eingegrenztem Inhalt. Abweichende Zeiten sind den Dozenten vorbehalten.

Voraussetzungen

s. Modulbeschreibung
3.198 Teilleistung: Modulprüfung Planung beruflicher Bildung [T-GEISTSOZ-106088]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100659 - Planung beruflicher Bildung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 7400346 | Modulprüfung Planung beruflicher Bildung | Schwarz |

Erfolgskontrolle(n)

Die Modulprüfung besteht aus der Anfertigung einer Hausarbeit im Umfang von ca. 15-20 Seiten. Sie bezieht sich auf einen oder mehrere Themenbereiche des Moduls.

Voraussetzungen

keine

Empfehlungen

keine
3.199 Teilleistung: Modulprüfung Portfolio 2 LP [T-GEISTSOZ-101164]

Verantwortung: Dr. Alexandra Zelfel
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100672 - Praxis des beruflichen Lehrens und Lernens

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
2

Notenskala
Drittelnoten

Version
1

Lehrveranstaltungen
SS 2022 5012136 Modulübergreifende Prüfung SPSII und III: Einführungsveranstaltung 2 SWS Sonstige (sonst.) / Zelfel

Prüfungsveranstaltungen
SS 2022 7400410 Modulprüfung Portfolio 2 LP Zelfel

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus dem Anfertigen eines Portfolios sowie einem schriftlichen Reflexionsteil im Umfang von ca. 10 Seiten. Das Portfolio erstreckt sich dabei über die Inhalte des Moduls. Zeiten der Portfolioerstellung sind als Zeiten der Vor- und Nachbereitung ausgewiesen.

Voraussetzungen
keine

Empfehlungen
Das Portfolio sollte als Möglichkeit genutzt werden, die gesammelten Erfahrungen sowie die thematisierten Inhalte im Hinblick auf die eigene Professionalität zu reflektieren.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Modulübergreifende Prüfung SPSII und III: Einführungsveranstaltung
5012136, SS 2022, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Erfolgskontrolle: Hausarbeit (15-20 Seiten) zu didaktischer Themenstellung; Präsentation optional; die Hausarbeit wird beraten
Lernziele/Fachliche und überfachliche Kompetenzen
• Die Studierenden beschreiben und diskutieren eine aktuelle (schul-)didaktische Fragestellung
• Die Studierenden setzen die bearbeitete Fragestellung zu Ihrem Unterrichtsversuch im Schulpraktikum in Beziehung
• Die Studierenden entwickeln eine neue Unterrichtsstunde zur bearbeiteten Methode/ Fragestellung im Erst-/Zweitfach
• Optional: Die didaktische Fragestellung/Konzeption wird im Seminar präsentiert
Inhalte:
• Reflexion der persönlichen Praktikumserfahrungen, v.a. der personalen Kompetenzen
• Lernfortschritte
• Portfolioarbeit
• Ausgewählte Methoden/ Fragestellungen: Gruppenpuzzle, Lernen durch Lehren, Quizformate, Umgang mit Unterrichtsstorungen, etc.
• Neue Medien: White Board, Tabletts etc.

Literatur:
Jahnke, Heike: Das Portfoliokonzept als Methode zur Beförderung von Selbstreflexionsprozessen von angehenden Lehrerinnen und Lehrern. In: bwp@Berufspädagogik und Wirtschaftspädagogik – online (28)
Mattes, Wolfgang: Methoden für den Unterricht: Kompakte Übersichten für Lehrende und Lernende. 2011
3.200 Teilleistung: Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft [T-GEISTSOZ-109227]

Verantwortung: Prof. Dr. Marcus Popplow
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-105138 - Grundlagen der Geschichtswissenschaft (Ingenieurbildung)

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7400421</td>
<td>10</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
<tr>
<td>SS 2022 7400208</td>
<td>10</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer mündlichen Teilprüfung (30 Min.) über den Stoff der beiden Veranstaltungen „Einführung in die Politische Geschichte“ und „Einführung in die Kulturgeschichte der Technik“.

Voraussetzungen
Alle Studienleistungen des Moduls

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-GEISTSOZ-101182 - Orientierung Geschichte muss erfolgreich abgeschlossen worden sein.
3.201 Teilleistung: Motorenmesstechnik [T-MACH-105169]

Verantwortung: Dr.-Ing. Sören Bernhardt
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen
Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2134137</td>
<td>Motorenmesstechnik</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Bernhardt</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105169</td>
<td>Motorenmesstechnik</td>
<td></td>
<td></td>
<td>Koch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105169</td>
<td>Motorenmesstechnik</td>
<td></td>
<td></td>
<td>Koch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung, Dauer 0,5 Stunden, keine Hilfsmittel

Voraussetzungen

keine

Empfehlungen

T-MACH-102194 Verbrennungsmotoren I

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Motorenmesstechnik

Vorlesung
2134137, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Präsenz/Online gemischt

Literaturhinweise

1. Grohe, H.: Messen an Verbrennungsmotoren
2. Bosch: Handbuch Kraftfahrzeugtechnik
3. Veröffentlichungen von Firmen aus der Meßtechnik
4. Hoffmann, Handbuch der Meßtechnik
5. Klingenberg, Automobil-Meßtechnik, Band C

Verantwortung: Gerd Graf
Dr. Alexandra Zelfel

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100672 - Praxis des beruflichen Lehrens und Lernens

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungschlüssel</th>
<th>SWS</th>
<th>Leistungspunkte</th>
<th>Leistungspunkte-Nachweis</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012134 A</td>
<td>Nachbereitendes Seminar zum Betriebspraktikum (IPBSc)</td>
<td>SWS</td>
<td>1</td>
<td>best./nicht best.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012124 A</td>
<td>Nachbereitung des Schulpraktikums Seminar Gruppe A</td>
<td>2 SWS</td>
<td>Seminar (S) / 🤓</td>
<td>Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012124 B</td>
<td>Nachbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum bzw. Nachbereitung des Schulpraktikums Gruppe B</td>
<td>SWS</td>
<td>Seminar (S) / 🤓</td>
<td>Zelfel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscodes</th>
<th>Veranstaltungschlüssel</th>
<th>SWS</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400360</td>
<td>Nachbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum</td>
<td></td>
<td>Zelfel</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7400402</td>
<td>Nachbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum</td>
<td></td>
<td>Zelfel</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤓 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

Erfolgreicher Abschluss der "Vorbereitung auf das Berufspädagogische bzw. Schul-Praktikum" sowie des vierwöchigen Berufspädagogischen bzw. Schul-Praktikums.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachbereitung des Schulpraktikums Seminar Gruppe A

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungschlüssel</th>
<th>SWS</th>
<th>Sprache: Deutsch, im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>5012124 A</td>
<td>SS 2022, 2 SWS, Präsenz/Online gemischt</td>
<td></td>
<td>im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt

Lernziele

Inhalte

Die Inhalte der Vorlesung sind insbesondere: Lehrer- und Schulalltag, Organisation des Lehreralltags, Bild des Lehrers in der heutigen öffentlichen Wahrnehmung, Merkmale und Besonderheiten des Lehrerberufs, Lösungsansätze und Lösungsalternativen bei typischen Lehrerproblemen, Vor- und Nachteile der Lehrerberuf (z.B. Besoldung, Karrierechancen, Fortbildungen, Beamtenstatus etc.), Verhalten in besonderen und außergewöhnlichen Situationen, Ausblick und Vorbereitung auf das Referendariat, Ausblick auf die Zeit nach dem Referendariat, Alternativen zum Lehrerberuf u.v.m.

Voraussetzung für ECTS-Nachweis (Studienleistung): Erfolgreiche Teilnahme am Seminar zur Vorbereitung des Schulpraktikums, regelmäßige aktive Beteiligung, rechtzeitige Abgabe der Vorgaben entsprechenden schriftlichen Leistungsnachweises (Portfolioleistung VSP und NSP/Schulpraktikum).

Organisatorisches

Anmeldung und weitere Informationen ab 01.04.2022 unter: https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen

Nachbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum Gruppe B 5012124 B, SS 2022, SWS, Im Studierenendenportal anzeigen

Seminar (S) Präsenz/Online gemischt
Inhalt

Erfolgskontrolle: Es wird eine aktive Mitarbeit und Textarbeit im Seminar erwartet. Nach dem VSP wird Erkundungsauftrag 1 angefertigt (1 ECTS), nach dem NSP Erkundungsauftrag 2 (=1 ECTS). Beide Erkundungsaufträge und ein Unterrichtsentwurf zusammen bilden das Portfolio (= 2 ECTS/benotet).

Lernziele/Fachliche und überfachliche Kompetenzen
- Die Studierenden benennen und problematisieren Aufgaben und Anforderungen an Lehrkräfte; sie reflektieren den Berufswunsch Lehrkraft zu werden
- Die Studierenden lernen typische Einsatzzfelder, Tätigkeiten, Problemfelder kennen
- Die Studierenden beschäftigen sich mit Heterogenität/heterogenen Lernvoraussetzungen von Klassen und den daraus folgenden Anforderungen
- Die Studierenden bereiten sich auf ihr Schulpraktikum und ihre Ausbildungsschule vor, indem sie erste Lehr-Lern-Arrangements planen, analysieren, korrigieren und reflektieren
- Die Studierenden praktizieren Methoden, die schulrelevant werden könnten
- Die Studierenden wenden Kommunikations- und Feedbackmodelle in Rollenspielen und Übungen an und bereiten damit fachgerechte Hospitationen vor
- Die Studierenden erstellen berufstypische Dokumentationen für den Unterricht, können diese fachsprachlich korrekt erläutern und im Team reflektieren

Inhalte:
- Lehrer werden/ Anforderungen an Berufsbildungspersonal
- Schule als Arbeitsplatz
- Organisation und Struktur von Schule
- Kommunikation in der Schule/Zu Betrieben/Feedbackkultur
- Praktikum in der Schule/ der 1. Tag (Vorbereitung)
- Unterrichtsplanung
- Arbeit mit Bildungsplänen
- Bedeutung von Präsenz/Körpersprache
- Personen-Wahrnehmung/ Beobachtung/Unterrichtsbeobachtung
- Umgang mit der Tatsache Beurteilungen zu erhalten (Lehrproben/Schulleitungsgutachten etc.)

Voraussetzungen:
Keine / Anmeldung zum 10.—wöchigem Schulpraktikum

Literatur:

Organisatorisches
Anmeldung und weitere Termine / Informationen ab 01.04.2022 unter: https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
3.203 Teilleistung: Nachbereitendes Seminar zum Betriebspraktikum [T-GEISTSOZ-109865]

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100643 - Betriebspraktikum

Teilleistungsart
Studienleistung
Leistungspunkte 1
Notenskala best./nicht best.
Turnus Jedes Semester
Dauer 1 Sem.
Version 1

Lehrveranstaltungen
SS 2022 5012138 A Nachbereitendes Seminar zum Betriebspraktikum (IP B.Sc.) SWS Seminar (S) / 🕷️ Zelfel

Prüfungsveranstaltungen
SS 2022 7400403 Nachbereitendes Seminar zum Betriebspraktikum Zelfel

Legende: 🖥 Online, 🕷️ Präsenz/Online gemischt, 🔊 Präsenz, ⏳ Abgesagt

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachbereitendes Seminar zum Betriebspraktikum (IP B.Sc.)
5012138 A, SS 2022, SWS, im Studierendenportal anzeigen

Im Studierendenportal anzeigen

Inhalt

Lernziele/Fachliche und überfachliche Kompetenzen
Die Studierenden reflektieren im Praktikum (selbständig) geleistete, einfache Aufgaben aus dem Bereich der Beruflichen Fachrichtung.

Die Studierenden wenden ein Kompetenzmodell auf ihre Berufliche Praxis an und definieren auf diesem Hintergrund Lernergebnisse, Lernentwicklungen und zukünftig zu erwerbende Lernleistungen.

Die Studierenden präsentieren im Praktikum geleistete Tätigkeiten und diskutieren auf diesem Hintergrund berufspraktische, pädagogische und fachliche Fragestellungen.

Die Studierenden setzen sich unter Einbezug der BAG-Analyse in (Ausbildungs-) Betrieben auseinander und erhalten einen Überblick über Ausbildungsberufe ihrer beruflichen Fachrichtung.

Die Studierenden diskutieren und bewerten Studieninhalte auf ihre Verwendbarkeit in der beruflichen Praxis und möglichen zukünftigen Tätigkeit.

Inhalte:
• Persönliche Praktikumserfahrungen
• Konnektivitätsorientierte Praktikumsdidaktik
• Reflexion personaler, fachlicher und methodischer Kompetenzen
• Überblick über Ausbildungsberufe die Rolle von Auszubildenden
• BAG-Analyse
• Ausbildungsbetriebe und Praktikumsbegleitung
• Lernortkooperation
• Technologiefortschritt und Betriebliche Praxis

Voraussetzungen:
Betriebspraktikum in einschlägigem Praktikumbetrieb mit Betreuung (6 Wochen)

Literatur:
Ostendorf, A. u.a. (Hrsg.) Den Lernraum Betriebspraktikum gemeinsam öffnen. Anspruch und Werkzeuge einer Konnektivitätsorientierten Praktikumsdidaktik. Innsbruck 2018

Organisatorisches
Anmeldung und weitere Informationen ab 01.04.2022 unter https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
3.204 Teilleistung: Nachhaltige Fahrzeugantriebe [T-MACH-111578]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Olaf Toedter

Einrichtung: KIT-Fakultät für Maschinenbau

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2133132</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsnummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105655</td>
<td>Nachhaltige Fahrzeugantriebe</td>
<td></td>
<td>Toedter</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrollen

mündliche Prüfung (20 Minuten)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Nachhaltige Fahrzeugantriebe

2133132, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt

Nachhaltigkeit
Umweltbilanzierung
Gesetzgebung
Alternative Kraftstoffe
BEV
Brennstoffzelle
Hybridantriebe

Organisatorisches

Die Vorlesung beginnt um 14 h und endet um 15:30 h (nicht um 17:30 h)
3.205 Teilleistung: Nachrichtentechnik I [T-ETIT-101936]

Verantwortung: Prof. Dr.-Ing. Laurent Schmalen
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102103 - Nachrichtentechnik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2310506 Nachrichtentechnik I</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🕵️️ Schmalen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2310508 Übungen zu 2310506 Nachrichtentechnik I</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🕵️️ Schmalen, Bansbach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7310506 Nachrichtentechnik I</td>
<td></td>
<td>Schmalen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7310506 Nachrichtentechnik I</td>
<td></td>
<td>Schmalen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕵️️ Präsenz/Online gemischt, 🗣 Präsenz, 🗿 Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 180 Minuten.

Voraussetzungen
keine

Empfehlungen
Inhalte der Höheren Mathematik I und II, Wahrscheinlichkeitstheorie und Signale und Systeme werden benötigt.

Anmerkungen
ad WS20/21 das erste Mal im Wintersemester statt im Sommersemester
3.206 Teilleistung: Nachrichtentechnik II / Communications Engineering II [T-ETIT-110697]

Verantwortung: Dr.-Ing. Holger Jäkel
Prof. Dr.-Ing. Laurent Schmalen
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-105274 - Nachrichtentechnik II / Communications Engineering II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2310509</td>
<td>Communications Engineering II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🔄</td>
<td>Jäkel</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2310510</td>
<td>Übung zu 2310509 Communications Engineering II</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🔄</td>
<td>Jäkel</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2310511</td>
<td>Nachrichtentechnik II</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🔄</td>
<td>Jäkel</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2310513</td>
<td>Übungen zu 2310511 Nachrichtentechnik II</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🔄</td>
<td>Sturm</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🔄 Online, 🔄 Präsenz/Online gemischt, 🔄 Präsenz, ✗ Abgesagt

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7310511</td>
<td>Nachrichtentechnik II</td>
<td>Jäkel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7310511</td>
<td>Nachrichtentechnik II</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten. Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Kenntnis der grundlegenden Ingenieurmathematik inklusive Integraltransformationen und Wahrscheinlichkeitstheorie sowie Grundlagenwissen über die Nachrichtentechnik.

Empfehlungen
Vorheriger Besuch der Vorlesung "Nachrichtentechnik I", "Wahrscheinlichkeitstheorie" sowie "Signale und Systeme" wird empfohlen.
3.207 Teilleistung: Numerische Mechanik für Industrieanwendungen [T-MACH-108720]

Verantwortung: Prof. Dr. Eckart Schnack
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart	Leistungspunkte	Notenskala	Turnus	Version
Prüfungsleistung mündlich | 4 | Drittelnoten | Jedes Sommersemester | 1

Lehrveranstaltungen
- SS 2022 2162298 Numerische Mechanik für Industrieanwendungen 3 SWS Vorlesung (V) Schnack

Prüfungsveranstaltungen
- WS 21/22 76-T-MACH-108720 Numerische Mechanik für Industrieanwendungen
- SS 2022 76-T-MACH-108720 Numerische Mechanik für Industrieanwendungen

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Mechanik für Industrieanwendungen
2162298, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Literaturhinweise
3.208 Teilleistung: Numerische Simulation reagierender Zweiphasenströmungen [T-MACH-105339]

Verantwortung: Dr.-Ing. Rainer Koch
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2169458</th>
<th>Numerische Simulation reagierender Zweiphasenströmungen</th>
<th>2 SWS</th>
<th>Vorlesung (V) / ☑</th>
<th>Koch</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105339 | Numerische Simulation reagierender Zweiphasenströmungen | Koch |
| SS 2022 | 76-T-MACH-105339-Wdh | Numerische Simulation reagierender Zweiphasenströmungen für Wiederholer | Koch |

Legende: 🖥 Online, ☑ Präsenz/Online gemischt, ☑ Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung
Dauer: 30 Minuten
Hilfsmittel: keine

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Numerische Simulation reagierender Zweiphasenströmungen
2169458, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Die Vorlesung richtet sich an Studenten und Doktoranden des Maschinenbaus und des Chemieingenieurwesens, die sich einen Überblick über die numerischen Methoden verschaffen möchten, auf denen gängige CFD Software basiert. Vorgestellt werden sowohl Methoden für reagierende einphasige Gasströmungen als auch für zweiphasige Strömungen, wie sie typischerweise in Gasturbinen und Verbrennungsmotoren vorkommen, die mit Flüssigbrennstoffen betrieben werden.

3. Strömung mit Reaktion: Verbrennungsmodelle, Einzeltropfenverbrennung, Sprayverbrennung

Lernziele:

Die Studenten können:

- Die Grundgleichungen der Strömungsmechanik beschreiben und anwenden
- Die Verfahren zur Berechnung turbulenter Strömungen erläutern und auswählen
- Die Arbeitsweise numerischer Lösungsverfahren erklären
- Die numerischen Methoden und Modelle, auf denen gängige CFD Software basiert, beurteilen
- Verschiedene Methoden zur Charakterisierung von Sprays beurteilen und anwenden
- Die Verfahren zur Berechnung der Flüssigkeitszerfalls verwenden
- Methoden und Modelle zur Berechnung von Mehrphasenströmungen analysieren und bewerten
- Reagierende Strömungen und zugehörige Modelle beschreiben und anwenden

Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 42 h
Mündliche Prüfung
Dauer: 30 Minuten

Hilfsmittel: keine

Lernziele:

Organisatorisches
Vorlesung findet in Präsenz statt, sofern die COVID-Inzidenzwerte es zulassen.

Literaturhinweise
Vorlesungsskript
Lecture notes
3.209 Teilleistung: Numerische Strömungsmechanik [T-MACH-105338]

Verantwortung: Dr.-Ing. Davide Gatti
Dr.-Ing. Franco Magagnato

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von:
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2153441</th>
<th>Numerische Strömungsmechanik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Gatti</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105338</th>
<th>Numerische Strömungsmechanik</th>
<th></th>
<th>Gatti, Frohnapfel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105338</td>
<td>Numerische Strömungstechnik</td>
<td></td>
<td>Magagnato</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, x Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung - 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Numerische Strömungsmechanik
2153441, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
Die Lehrveranstaltung behandelt folgende Themen:
1. Grundgleichungen der Numerischen Strömungsmechanik
2. Wichtigste Diskretisierungsmethoden für strömungsmechanische Probleme, mit Fokus auf finiten Differenzen und finiten Volumina
3. Rand- und Anfangsbedingungen
4. Netzgenerierung und Netzbehandlung
5. Lösungsalgorithmen für lineare und nichtlineare Gleichungssysteme
6. Lösungsstrategien für die inkompressiblen Navier-Stokes Gleichungen
7. Einführung in die Lösung der kompressiblen Navier-Stokes Gleichungen
8. Beispiele zur numerischen Simulation in der Praxis

Literaturhinweise
3.210 Teilleistung: Optische Messsysteme [T-MACH-111249]

Verantwortung: PD Dr.-Ing. Ingo Sieber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart Prüfungsleistung mündlich Leistungspunkte 4 Notenskala Drittelnoten Turnus Jedes Sommersemester Version 1

Lehrveranstaltungen
SS 2022 2106010 Optische Messsysteme 2 SWS Vorlesung (V) / 🗣 Sieber

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: ca. 30min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Optische Messsysteme
2106010, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Vorlesung gibt eine Einführung in optische Messsysteme und die optische Messtechnik. Optische Messtechnik bietet die Vorteile der berührungslosen und schnellen Messung und eignet sich daher auch für direkte Messungen während des Prozesses.

Die Messsysteme werden anhand der unterliegenden physikalischen Grundlagen beschrieben und ihre praktische Anwendung wird anhand konkreter Beispiele aufgezeigt.

Inhalt:
- Einführung
- Optische Messprinzipien
- System / Optik und Licht
- Optische Bauelemente
- Optische Systeme für die
 - Abstandsmessung
 - Oberflächenmessung
 - Gassensorik

Lernziele:
Die Studierenden...:
- kennen die Grundlagen optischer Messtechnik.
- kennen unterschiedliche optische Messprinzipien.
- kennen die Funktion optischer Bauelemente
- können für verschiedene Messaufgaben das geeignete Messsystem finden und anwenden.

Organisatorisches
Die LV wird ab SS 2022 angeboten.

Literaturhinweise
3.211 Teilleistung: Orientierung Geschichte [T-GEISTSOZ-101182]

Verantwortung: Prof. Dr. Marcus Popplow
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-105138 - Grundlagen der Geschichtswissenschaft (Ingenieurpädagogik)
Voraussetzung für: T-GEISTSOZ-101185 - Einführung in die Politische Geschichte
T-GEISTSOZ-101186 - Einführung in die Kulturgeschichte der Technik
T-GEISTSOZ-109227 - Modulteilprüfung mündlich - Grundlagen der Geschichtswissenschaft

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>5012042</th>
<th>Orientierung Geschichte</th>
<th>2 SWS</th>
<th>Proseminar (PS)</th>
<th>Popplow</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 7400154 | Orientierung Geschichte | Popplow |

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht in der erfolgreichen Teilnahme an der Veranstaltung "Orientierung Geschichte", d.h. im Bestehen der Studienleistungen, die in Form von Hausaufgaben und/oder Referaten zu erbringen sind. Im Verlauf der Veranstaltung sind zwei solcher Leistungen zu erbringen.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Orientierung Geschichte
5012042, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Das Seminar gibt zu Beginn des Studiums (BA-Euklid, Geschichte als Wahlpflichtfach im BA, Ingenieurpädagogik, etc.) einen Einblick in Inhalte, Fragestellungen und Arbeitsfelder der Geschichtswissenschaft. Hauptziel ist es, die Vielfalt historischen Arbeitens kennenzulernen. Thematisch stehen Beispiele mit Bezug auf die drei historischen „Säulen“ des Studiengangs im Fokus, also Ideengeschichte, Politische Geschichte und Kulturgeschichte der Technik.

In diesem Rahmen geht es um Formate, in denen historisches Wissen präsentiert wird, um unterschiedliche Adressaten historischer Arbeiten, um Geschichtswissenschaft im Internet und um die Frage, warum man sich eigentlich mit Geschichte beschäftigt. Zudem werden die Kompetenzen, die Historiker/innen benötigen, Berufe, in denen sie arbeiten sowie Institutionen und Themenfelder der Geschichtswissenschaft erläutert. Das Seminar bereitet Sie damit auch darauf vor, später größere Projekte wie die BA-Arbeit anzugehen.

Die Studienleistung besteht in der Bearbeitung mehrerer kleinerer Aufgaben (kurze schriftliche Einsendungen, etc.) und einer eigenständigen Forschungsarbeit im Umfang von fünf Seiten.

Literaturhinweise
Um eine Vorstellung zu bekommen, womit sich die Geschichtswissenschaft aktuell beschäftigt, schauen Sie sich das ein oder andere Webportal an, beispielsweise:

- www.clio-online.de (auf den ersten Blick etwas unübersichtlich, aber es geht hier eben um ein „Portal“, das den Zugang zu sehr vielfältigen Informationen und anderen Websites bereitstellt)
- www.europa.clio-online.de (Unterseite von Clio online, speziell zur europäischen Geschichte)

und/oder lesen Sie den ein oder anderen Artikel auf:

- www.ieg-ego.eu (online-Enzyklopädie zur europäischen Geschichte)
- https://docupedia.de/zg/Hauptseite (online-Nachschlagewerk zur Zeitgeschichte)
3.212 Teilleistung: Pädagogische Psychologie [T-GEISTSOZ-101098]

Verantwortung: Prof. Dr. Ulrich Ebner-Priemer
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100640 - Didaktik und Methodik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012180</td>
<td>Einführung in die Pädagogische Psychologie (B.A. Päd., IP, LA M.Ed. Modul 2)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ebner-Priemer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012183</td>
<td>Pädagogische Psychologie (B.A. Pädagogik, Bildungswissenschaftliches Begleitstudium, ZAK)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Langemeyer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5000553</td>
<td>Pädagogische Psychologie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Langemeyer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400069</td>
<td>Pädagogische Psychologie</td>
<td>Langemeyer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7400285</td>
<td>Pädagogische Psychologie (Ebner-Priemer)</td>
<td>Ebner-Priemer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7400598</td>
<td>Lehrveranstaltung Allgemeine Pädagogik und Bildungswissenschaften V</td>
<td>Langemeyer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🍪 Präsenz/Online gemischt, 🗣 Präsenz, 🗿 Abgesagt

Erfolgskontrolle(n)

Klausur zur Vorlesung "Einführung in die Pädagogische Psychologie"

Voraussetzungen

keine

Empfehlungen

keine
3.213 Teilleistung: Patente und Patentstrategien in innovativen Unternehmen [T-MACH-105442]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Sven Matthiesen
 Dipl.-Ing. Frank Zacharias

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
 M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
 M-MACH-102618 - Schwerpunkt: Produktionstechnik
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Modul</th>
<th>Veranstaltungshäufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2147161, Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2 SWS</td>
<td>Block (B) / Präsenz</td>
<td>Zacharias</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2147160, Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Zacharias</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Modul</th>
<th>Veranstaltungshäufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105442, Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2 SWS</td>
<td>Block (B) / Präsenz</td>
<td>Zacharias, Albers</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105442, Patente und Patentstrategien in innovativen Unternehmen</td>
<td>2 SWS</td>
<td>Block-Vorlesung (BV)</td>
<td>Zacharias, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, benotet, Dauer: 20 Minuten

Voraussetzungen
keine

Empfehlungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Patente und Patentstrategien in innovativen Unternehmen
2147161, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage.

Organisatorisches
Weitere Informationen siehe IPEK-Homepage.
https://www.ipek.kit.edu/2976_2858.php

Patente und Patentstrategien in innovativen Unternehmen
2147160, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Inhalt
Anmeldung erforderlich. Weitere Informationen siehe IPEK-Homepage oder ILIAS
Anwesenheit Vorlesung (5 VL): 24 Std
Persönliche Vor- und Nachbereitung Vorlesung: 5 Std
Vorbereitung Klausur: 91 Std

Vorlesungsumdruck:

1. Einführung in gewerbliche Schutzrechte (Intellectual Property)
2. Beruf des Patentanwalts
3. Anmelden und Erwirken von gewerblichen Schutzrechten
4. Patentliteratur als Wissens-/Informationsquelle
5. Arbeitnehmererfindungsrecht
6. Aktive, projektierte Schutzrechtsbetreuung
7. Strategisches Patentieren
8. Bedeutung gewerblicher Schutzrechte
9. Internationale Herausforderungen und Trends
10. Professionelle Verhandlungsführung und Konfliktbeilegungsverfahren
11. Aspekte des Gesellschaftsrechts
3.214 Teilleistung: Photovoltaik [T-ETIT-101939]

Verantwortung:
Prof. Dr.-Ing. Michael Powalla

Einrichtung:
KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von:
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2313737 Photovoltaik</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Powalla, Lemmer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2313738 Übungen zu 2313737 Photovoltaik</td>
<td>1 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Powalla, Lemmer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7313737 Photovoltaik</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7313737 Photovoltaik</td>
<td>Powalla, Lemmer</td>
<td></td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online,
- 🧩 Präsenz/Online gemischt,
- 🗣 Präsenz,
- ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen
"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.
3.215 Teilleistung: Physik für Ingenieure [T-MACH-100530]

Verantwortung: Prof. Dr. Martin Dienwiebel
Prof. Dr. Peter Gumbsch
apl. Prof. Dr. Alexander Nesterov-Müller
Dr. Daniel Weygand

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
KIT-Fakultät für Maschinenbau/Institut für Mikrostrukturtechnik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Sprache</th>
<th>Uhrzeit</th>
<th>Ort</th>
<th>Dozent(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2142890</td>
<td>Physik für Ingenieure</td>
<td>4</td>
<td>Deutsch</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Weygand, Dienwiebel, Nesterov-Müller, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Ort</th>
<th>Dozent(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-100530</td>
<td>Physik für Ingenieure</td>
<td></td>
<td>Gumbsch, Dienwiebel, Nesterov-Müller, Weygand</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100530</td>
<td>Physik für Ingenieure</td>
<td></td>
<td>Gumbsch, Weygand, Nesterov-Müller, Dienwiebel</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 90 min

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Physik für Ingenieure

2142890, SS 2022, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
3 TEILLEISTUNGEN

Teilleistung: Physik für Ingenieure [T-MACH-100530]

Inhalt
1) Grundlagen der Festkörperphysik
 • Teilchen Welle Dualismus
 • Schrödingergleichung
 • Teilchen / Tunneln
 • Wasserstoffatom

2) elektrische Leitfähigkeit von Festkörpern
 • Festkörper: periodische Potenziale
 • Pauli-Prinzip
 • Bandstrukturen
 • Metalle, Halbleitern und Isolatoren
 • pn-Ubergang

3) Optik
 • Quantenmechanische Prinzipien des Lasers
 • Lineare Optik
 • Nicht-lineare Optik
 • Quanten-Optik

Der/die Studierende
 • besitzt das grundlegende Verständnis der physikalischen Grundlagen, um den Zusammenhang zwischen den quantenmechanische Prinzipien und elektrischen und optischen Eigenschaften von Materialien zu erklären.
 • kann die relevanten Experimente zur Veranschaulichung quantenmechanischer Prinzipien beschreiben

Präsenzzeit: 22,5 Stunden (Vorlesung) und 22,5 Stunden (Übung)
Selbststudium: 105 Stunden

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 min.) (nach §4(2), 1 SPO).
Die Note ist die Note der schriftlichen Multiple Choice Prüfung.

Organisatorisches
Kontakt: daniel.weygand@kit.edu

Literaturhinweise
 • Tipler und Mosca: Physik für Wissenschaftler und Ingenieure, Elsevier, 2004
 • Harris, Moderne Physik, Pearson Verlag, 2013
3.216 Teilleistung: Physikalische Grundlagen der Lasertechnik [T-MACH-102102]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Semester</th>
<th>ECTS</th>
<th>Lehrveranstaltungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2181612</td>
<td>3</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102102</td>
<td>3</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Semester</th>
<th>ECTS</th>
<th>Lehrveranstaltungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102102</td>
<td>3</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102102</td>
<td>3</td>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕒 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (30 min)

keine Hilfsmittel

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105164 - Lasereinsatz im Automobilbau darf nicht begonnen worden sein.

Empfehlungen

grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Lehrveranstaltungsform</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physikalische Grundlagen der Lasertechnik</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

WS 21/22, 2181612, 3 SWS, Sprache: Deutsch, Im Studierenportal anzeigen
Inhalt

- Physikalische Grundlagen der Lasertechnik
- Laserstrahlquellen (Festkörper-, Halbleiter-, Gas-, Flüssigkeits- u.a. Laser)
- Strahleneigenschaften, -führung, -formung
- Laser in der Materialbearbeitung
- Laser in der Messtechnik
- Laser in der Medizintechnik
- Lasersicherheit

Die Vorlesung wird durch eine Übung ergänzt.

Der/die Studierende

- kann die Grundlagen der Lichtentstehung, die Voraussetzungen für die Lichtverstärkung sowie den prinzipiellen Aufbau und die Funktionsweise unterschiedlicher Laserstrahlquellen erläutern.
- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und auf dieser Basis anwendungsspezifisch geeignete Laserstrahlquellen auswählen.
- kann die Möglichkeiten zum Einsatz von Lasern in der Mess- und Medizintechnik erläutern.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung beschreiben und daraus die erforderlichen Maßnahmen für die Gestaltung von Laseranlagen ableiten.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Präsenzzeit: 33,5 Stunden
Selbststudium: 116,5 Stunden

Die Erfolgskontrolle erfolgt in Form einer ca. 30 min. mündlichen Prüfung (nach §4(2), 2 SPO) zu einem vereinbarten Termin.

Die Wiederholungsprüfung ist zu jedem vereinbarten Termin möglich.

Im Rahmen des Bachelor- und Master-Studiums darf nur eine der beiden Vorlesungen "Lasereinsatz im Automobilbau" (2182642) oder "Physikalische Grundlagen der Lasertechnik" (2181612) gewählt werden.

Organisatorisches
Termine für die Übung werden in der Vorlesung bekannt gegeben.

Literaturhinweise
T. Graf: Laser - Grundlagen der Laserstrahlerzeugung 2015, Springer Vieweg
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.217 Teilleistung: Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung [T-MACH-105537]

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 3

Lehrveranstaltungen
WS 21/22 2189906 Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung 1 SWS Vorlesung (V) / 🗣 Dagan, Metz

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105537 Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung Dagan
SS 2022 76-T-MACH-105537 Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung Dagan

Erfolgskontrolle(n)
mündlich, ca. 30 min

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Physikalische und chemische Grundlagen der Kernenergie im Hinblick auf Reaktorstörfälle und nukleare Entsorgung 2189906, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

- Relevante physikalische Begriffe der Kernphysik
- Nachzerfallswärme-Borst-Wheeler Gleichung
- Die Unfälle von Three Mile Island und Fukushima
- Kernspaltung, Kettenreaktion und Reaktor- Kontrollsysteme
- Grundbegriffe der Wirkungsquerschnitte
- Prinzipien der Reaktorkinetik.
- Reaktorvergiftung
- Die Unfälle von Idaho und Tschernobyl
- Grundlagen des Kernbrennstoffkreislaufs
- Wiederaufarbeitung ausgedienter Brennelemente und Verglasung von Spaltproduktlösungen
- Zwischenlagerung nuklearer Abfälle in Oberflächenlagern
- Multibarrierenkonzept für Endlagerung in tiefen geologischen Formationen
- Die Situation in den Endlagern Asse II, Konrad und Morsleben

Die Studierenden

- gewinnen das physikalische Verständnis für die bekanntesten nuklearen Unfälle
- können vereinfachte Rechnungen ausführen, um die Ereignisse nachzuvollziehen
- können Sicherheits-relevante Eigenschaften von schwach-, mittel- und hochradioaktiven Abfällen definieren
- sind in der Lage, die Vorgehensweise und Auswirkungen der Wiederaufarbeitung, Zwischenlagerung und Endlagerung nuklearer Abfälle zu bewerten

Präsenzzeit: 14 Stunden
Selbststudium:46 Stunden
mündlich, ca. 20 min

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
AEA öffentliche Dokumentation zu den nuklearen Ereignissen
K. Wirtz: Grundlagen der Reaktortechnik Teil I, II, Technische Hochschule Karlsruhe 1966
J. Duderstadt and L. Hamilton: Nuclear reactor Analysis, J. Wiley $ Sons , Inc. 1975 (in Englisch)
3.218 Teilleistung: Planung von Montagesystemen [T-MACH-105387]

Verantwortung: Eberhardt Haller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vortragsthema</th>
<th>SWS</th>
<th>Modul</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2109034</td>
<td>Planung von Montagesystemen</td>
<td>2 SWS</td>
<td>Block (B) / 🗣</td>
<td>Haller</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2109034</td>
<td>Planung von Montagesystemen</td>
<td>2 SWS</td>
<td>Block (B) / 🗣</td>
<td>Haller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsbezeichnung</th>
<th>Prüfungstitel</th>
<th>SWS</th>
<th>Modul</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105387</td>
<td>Planung von Montagesystemen</td>
<td>Deml</td>
<td>Deml</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105387</td>
<td>Planung von Montagesystemen</td>
<td>Deml</td>
<td>Deml</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
Termingerechte Vorabmeldung im ILIAS, da teilnahmebeschränkt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Planung von Montagesystemen

2109034, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lehrinhalt:

1. Planungsteilasen
2. Schwachstellenanalyse
3. Planung von Arbeitssystemen (technische/organisatorische Strukturierungsprinzipien, Kapazitätsrechnung, Vorranggraphentechnik, Entlohnung)
4. Bewertung
5. Präsentation

Voraussetzungen:

- Kompaktveranstaltung (eine Woche ganztagig)
- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in Einführungsveranstaltung und Vorlesung

Empfehlungen:

- Arbeitswissenschaftliche oder produktionsorganisatorische Kenntnisse vorteilhaft

Lernziele: die Studierenden

- kennen Planungsteilasen
- kennen Schwachstellenanalyse
- können Planung von Arbeitssystemen mit geeigneten Mitteln durchführen (z.B. technische/organisatorische Strukturierungsprinzipien, Kapazitätsrechnung, Vorranggraphentechnik, Entlohnung)
- können eine Planungslösung bewerten
- können Ergebnisse präsentieren
Organisatorisches
- Anwesenheitspflicht in Einführungsvorlesung und Blockvorlesung.
- Teilnehmerzahl beschränkt. Anmeldung über ILIAS.
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis zwei Wochen vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- mündliche Prüfung (ca. 30 Minuten)
- Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung
- Kompaktveranstaltung (eine Woche ganztägig).
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.

Planung von Montagesystemen
2109034, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
Lehrinhalt:

1. Planungsleitlinien
2. Schwachstellenanalyse
3. Planung von Arbeitssystemen (technische/organisatorische Strukturierungsprinzipien, Kapazitätsrechnung, Vorranggraphentechnik, Entlohnung)
4. Bewertung
5. Präsentation

Voraussetzungen:
- Kompaktveranstaltung (eine Woche ganztägig)
- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in Einführungsveranstaltung und Vorlesung

Empfehlungen:
- Arbeitswissenschaftliche oder produktionsorganisatorische Kenntnisse vorteilhaft

Lernziele: die Studierenden

- kennen Planungsleitlinien
- kennen Schwachstellenanalyse
- können Planung von Arbeitssystemen mit geeigneten Mitteln durchführen (z.B. technische/organisatorische Strukturierungsprinzipien, Kapazitätsrechnung, Vorranggraphentechnik, Entlohnung)
- können eine Planungslösung bewerten
- können Ergebnisse präsentieren

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.219 Teilleistung: Planungsmethodik [T-BGU-107450]

Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103743 - Planungsmethodik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200104</td>
<td>Planungsmethodik</td>
<td>2 SWS</td>
<td>Vorlesung / Übung (VÜ) / 🗣</td>
<td>Vortisch, N.N.</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231107450</td>
<td>Planungsmethodik</td>
<td>Vortisch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8231107450</td>
<td>Planungsmethodik</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliches Testat, 30 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>Planungsmethodik</th>
<th>Vorlesung / Übung (VÜ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6200104, WS 21/22, 2 SWS, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt
Die Veranstaltung "Planungsmethodik" vermittelt allgemeine Begriffe und Zusammenhänge in der Raum- und Infrastrukturplanung. Sie bietet einen Einstieg in Theorie und Methodik der Planung. Dabei geht es u. a. um folgende Themen:
- Planungsgrundlagen
- Planungsleitbild Verkehr
- Interessenkonflikte und Wahrnehmung
- Prognoseverfahren

3.220 Teilleistung: Praktikum für rechnergestützte Strömungsmesstechnik [T-MACH-106707]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistungspunkt(e)</th>
<th>Prüfungspunkt(e)</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2171488</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Bauer, Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2171488</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Bauer, Mitarbeiter</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>Prüfungspunkt(e)</th>
<th>Verantwortlicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-106707</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>Bauer</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106707</td>
<td>Praktikum für rechnergestützte Strömungsmesstechnik</td>
<td>Bauer</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten
Hilfsmittel: keine
Voraussetzungen: keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum für rechnergestützte Strömungsmesstechnik

2171488, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.

Lerninhalt:

Aufbau von Meßsystemen
- Meßaufnehmer und Sensoren
- Analog/Digital-Wandlung
- Programmentwurf und Programmierstil in LabView
- Datenverarbeitung
- Bus-Systeme
- Aufbau eines rechnergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
- Frequenzanalyse

Präsenzzzeit: 52,5
Selbststudium: 67,5

Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Ort und Zeit siehe Institutshomepage.
Praktikum findet in Präsenz statt, sofern die COVID-Inzidenzwerte es zulassen.

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011

Praktikum für rechnergestützte Strömungsmesstechnik
2171488, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
siehe Internet-Seite des Instituts;
Anmeldung erfolgt über Anmeldeformular auf der Internet-Seite des Instituts.
Anmeldung während der Vorlesungszeit über die Webseite.

Lehrinhalt:

Aufbau von Meßsystemen
- Meßaufnehmer und Sensoren
- Analog/Digital-Wandlung
- Programmentwurf und Programmierstil in LabView
- Datenverarbeitung
- Bus-Systeme
- Aufbau eines computergestützten Messsystems für Druck, Temperatur und abgeleitete Größen
- Frequenzanalyse

Arbeitsaufwand:
Präsenzzeit: 52,5
Selbststudium: 67,5

Lernziele:
Die Studenten können:
- die wesentlichen Grundlagen der rechnergestützen Messwerterfassung theoretisch beschreiben und praktisch anwenden
- nach jedem Lernabschnitt den vorgestellten Stoff anhand eines Beispiels am PC in die Praxis umsetzen

Nachweis:
Gruppenkolloquium zu den einzelnen Themenblöcken
Dauer: jeweils ca. 10 Minuten

Hilfsmittel: keine

Organisatorisches
Der aktuelle Status wird auf der ITS-homepage bekannt gegeben.

Literaturhinweise
Germer, H.; Wefers, N.: Meßelektronik, Bd. 1, 1985
LabView User Manual
Hoffmann, Jörg: Taschenbuch der Messtechnik, 6., aktualisierte. Aufl., 2011
3.221 Teilleistung: Praktikum Lasermaterialbearbeitung [T-MACH-102154]

Verantwortung: Dr.-Ing. Johannes Schneider
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2183640</td>
<td>Praktikum "Lasermaterialbearbeitung"</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2183640</td>
<td>Praktikum "Lasermaterialbearbeitung"</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Semester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Prüfungsveranstaltung</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102154</td>
<td>Praktikum Lasermaterialbearbeitung</td>
<td>Schneider</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102154</td>
<td>Praktikum Lasermaterialbearbeitung</td>
<td>Schneider</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Voraussetzungen
Keine

Empfehlungen
Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Lasermaterialbearbeitung"
2183640, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:
• Sicherheit beim Umgang mit Laserstrahlung
• Härten und Umschmelzen
• Schmelz- und Brennschneiden
• Oberflächenmodifizierung durch Dispergieren und Legieren
• Fügen durch Schweißen bzw. Löten
• Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
• Messtechnik
Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende
- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.
Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.
Präsenzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines übergreifenden Abschlusskolloquiums incl. einer 20 minütigen Präsentation.

Organisatorisches
Maximal 12 Teilnehmer/innen!
Aktuell sind bereit alle Plätze vergeben! Registrierung für Nachrückliste möglich per Email an johannes.schneider@kit.edu
Praktikum findet in Kleingruppen semesterbegleitend (dienstags bzw. mittwochs, ganztägig) bzw. als Blockpraktikum auf dem Campus Nord am IAM-AWP (Geb. 681) und auf dem Campus Süd am IAM-CMS (Geb. 30.48) statt!
Termine werden mit den Teilnehmern/innen direkt abgestimmt.

Literaturhinweise
R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer

Praktikum "Lasermaterialbearbeitung"
2183640, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P) Präsenz/Online gemischt
Inhalt
Das Praktikum umfasst acht halbtägige praktische Versuche, die in Gruppen durchgeführt werden. Es werden folgende Themengebiete der Lasermaterialbearbeitung von Metallen, Polymeren und Keramiken behandelt:

- Sicherheit beim Umgang mit Laserstrahlung
- Härten und Umschmelzen
- Schmelz- und Brennschneiden
- Oberflächenmodifizierung durch Dispergieren und Legieren
- Fügen durch Schweißen bzw. Löten
- Materialabtrag (Oberflächenstrukturierung, Beschriften und Bohren)
- Messtechnik

Im Rahmen des Praktikums werden verschiedene Laserstrahlquellen wie CO2-, Nd:YAG-, Excimer- und Hochleistungs-Dioden-Laser vorgestellt und genutzt.

Der/die Studierende

- kann für die wichtigsten lasergestützten Materialbearbeitungsprozesse den Einfluss von Laserstrahl-, Material- und Prozessparametern beschreiben und geeignete Parameter auswählen.
- kann die notwendigen Voraussetzungen zum sicheren Umgang mit Laserstrahlung erläutern.

Es werden grundlegende Kenntnisse in Physik, Chemie und Werkstoffkunde vorausgesetzt.

Die Teilnahme an der Lehrveranstaltung Physikalische Grundlagen der Lasertechnik (2181612) oder Lasereinsatz im Automobilbau (2182642) wird dringend empfohlen.

Präsenzzeit: 34 Stunden
Selbststudium: 86 Stunden

Die Erfolgskontrolle erfolgt in Form eines Kurzkolloquiums zu jedem Versuch sowie eines Übergreifenden Abschlusskolloquiums inkl. einer 20 minütigen Präsentation.

Organisatorisches

Die Praktikumsplätze für das Sommersemester 2022 sind bereits ausgebucht!
Anmeldung per Email an johannes.schneider@kit.edu

Das Praktikum findet semesterbegleitend in Kleingruppen am IAM-CMS (CS) bzw. IAM-AWP (CN) statt!

Die Termine werden zu Beginn des Semesters bekannt gegeben.

Literaturhinweise

R. Poprawe: Lasertechnik für die Fertigung, 2005, Springer
3.222 Teilleistung: Praktikum Produktionsintegrierte Messtechnik [T-MACH-108878]

Verantwortung: Dr.-Ing. Benjamin Häfner
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102601 - Schwerpunkt: Automatisierungs-technik
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung anderer Art-Leistungspunkte 4
Notenskala Drittelnoten-Turnus Jedes Sommersemester-Version 2

Lehrveranstaltungen
SS 2022 2150550 Praktikum Produktionsintegrierte Messtechnik 3 SWS Praktikum (P) / Häfner

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-108878 Praktikum Produktionsintegrierte Messtechnik Hänfer
SS 2022 76-T-MACH-108878 Praktikum Produktionsintegrierte Messtechnik Hänfer

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet): Kolloquium von 15 min zu Beginn und Bewertung der Mitarbeit während der Versuche und
Mündliche Prüfung (15 min)

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum Produktionsintegrierte Messtechnik
2150550, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt

Es werden die folgenden Themen behandelt:

- Klassifikation und Anwendungsfälle relevanter Mess- und Prüfverfahren in der Produktion
- Machine Vision mittels optischer Sensoren
- Informationsfusion am Beispiel optischer Sensoren
- Robotergestützte optische Messungen
- Zerstörungsfreie Prüftechnik am Beispiel von akustischer Sensorik
- Koordinatenmesstechnik
- Industrielle Computertomographie
- Messunsicherheitermittlung
- Analyse von Messdaten im Produktionsumfeld mittels Data-Mining

Lernziele:
Die Studierenden …

- können verschiedene für die Produktion relevante Mess- und Prüfverfahren nennen, beschreiben und voneinander abgrenzen.
- können grundlegende Messungen mit den behandelten in-line- und Labormessverfahren selbständig durchführen.
- können die Ergebnisse der Messungen analysieren und deren Messunsicherheit bewerten.
- sind in der Lage auf Basis der Messungen im Produktionsumfeld abzuleiten, ob die gemessenen Bauteile die spezifizierten Qualitätsanforderungen erfüllen.
- sind in der Lage, die vorgestellten Mess- und Prüfverfahren für neue Problemstellungen anzuwenden.

Arbeitsaufwand:
Präsenzzeit: 31,5 Stunden
Selbststudium: 88,5 Stunden

Organisatorisches
Die Lehrveranstaltung findet stets dienstags nachmittags statt.

The course always takes place on Tuesdays in the afternoon.
For organizational reasons the number of participants for the course is limited. Hence all selection process will take place. Applications are made via the homepage of wbk (http://www.wbk.kit.edu/studium-und-lehre.php).

Literaturhinweise

Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/). Additional reference to literature will be provided, as well.
3.223 Teilleistung: Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik [T-MACH-105341]

Verantwortung: Prof. Dr.-Ing. Christoph Stiller
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart Studienleistung
Leistungspunkte 4
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung</th>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Modulcode</th>
<th>Lehrveranstaltungsart</th>
<th>SWS</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2137306</td>
<td>Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"</td>
<td>3 SWS</td>
<td>Praktikum (P) / 🗣</td>
<td>Stiller, Müßigmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung</th>
<th>Modulnummer</th>
<th>Lehrveranstaltung</th>
<th>Modulcode</th>
<th>Prüfungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105341</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td></td>
<td>Stiller</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105341</td>
<td>Praktikum Rechnergestützte Verfahren der Mess- und Regelungstechnik</td>
<td></td>
<td>Stiller</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📌 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Kolloquien

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Praktikum "Rechnergestützte Verfahren der Mess- und Regelungstechnik"
2137306, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz
Inhalt
8 Parallelkurse

Lerninhalt:
1. Digitaltechnik
2. Digitales Speicheroszilloskop und digitaler Spektrum-Analysator
3. Ultraschall-Computertomographie
4. Beleuchtung und Bildgewinnung
5. Digitale Bildverarbeitung
6. Bildauswertung
7. Reglersynthese und Simulation
8. Roboter: Sensorik
9. Roboter: Aktorik und Bahnplanung

Das Praktikum umfasst 9 Versuche.

Voraussetzungen: Empfehlungen:
Vorlesung 'Grundlagen der Mess- und Regelungstechnik'

Arbeitsaufwand: 120 Stunden

Lernziele:

Nachweis:
Kolloquien

Literaturhinweise
Übungsanleitungen sind auf der Institutshomepage erhältlich.
Instructions to the experiments are available on the institute's website
3.224 Teilleistung: Product Lifecycle Management [T-MACH-105147]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Lifecycle Management</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Vorlesung (V)</td>
<td>76-T-MACH-105147</td>
</tr>
<tr>
<td>Ovtcharova, Elstermann</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung 90 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Product Lifecycle Management
2121350, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V) Präsenz/Online gemischt

Inhalt
Die Lehrveranstaltung beinhaltet:

- Grundlagen für das Produktdatenmanagement und den Datenaustausch
- IT-Systemlösungen für Product Lifecycle Management (PLM)
- Wirtschaftlichkeitsbetrachtung und Einführungsproblematik
- Anschauungsszenario für PLM am Beispiel des Institutseigenen I4.0Lab

Nach erfolgreichem Besuch der Lehrveranstaltung können Studierende:

- die Herausforderungen beim Datenmanagement und -austausch benennen und Lösungskonzepte hierfür beschreiben.
- das Managementkonzept PLM und seine Ziele verdeutlichen und den wirtschaftlichen Nutzen herausstellen.
- die Prozesse die zur Unterstützung des Produktlebenszyklus benötigt werden erläutern und die wichtigsten betrieblichen Softwaresysteme (PDM, ERP, ...) und deren Funktionen beschreiben.

Literaturhinweise
Vorlesungsfolien.

3.225 Teilleistung: Produkt- und Produktionskonzepte für moderne Automobile [T-MACH-110318]

Verantwortung: Dr. Stefan Kienzle
Dr. Dieter Steegmüller

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102618 - Schwerpunkt: Produktionstechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Produkt- und Produktionskonzepte für moderne Automobile</th>
<th>SWS</th>
<th>Prüfungsart</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149670</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>2</td>
<td>Vorlesung (V) / 📔</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Prüfungscode</th>
<th>Produkt- und Produktionskonzepte für moderne Automobile</th>
<th>Steegmüller, Kienzle</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110318</td>
<td>Produkt- und Produktionskonzepte für moderne Automobile</td>
<td>Steegmüller, Kienzle</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📔 Präsenz/Online gemischt, 🗾 Präsenz, ⌻ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung (20 min)

Voraussetzungen

Die Teilleistung T-MACH-105166 – Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt- und Produktionskonzepte für moderne Automobile

Vorlesung (V)
Präsenz/Online gemischt

Voraussetzungen

Die Teilleistung T-MACH-105166 – Materialien und Prozesse für den Karosserieleichtbau in der Automobilindustrie darf nicht begonnen sein.
Inhalt
Die Vorlesung beleuchtet die praktischen Herausforderungen des modernen Automobilbaus. Die Dozenten nehmen als ehemalige Führungspersönlichkeiten der Automobilindustrie Bezug auf aktuelle Gesichtspunkte der automobilen Produktentwicklung und Produktion.
Die behandelten Themen sind im Einzelnen:

- Rahmenbedingungen der Fahrzeug- und Karosserieentwicklung
- Integration neuer Antriebstechnologien
- Funktionale Anforderungen (Crashsicherheit etc.), auch an Elektrofahrzeuge
- Entwicklungsprozess an der Schnittstelle Produkt & Produktion, CAE/ Simulation
- Energiespeicher und Versorgungsinfrastruktur
- Aluminium- und Stahlleichtbau
- FVK und Hybride Bauteile
- Batterie- Brennstoffzellen- und Elektromotorenproduktion
- Fügetechnik im modernen Karosseriebau
- Moderne Fabriken und Fertigungsverfahren, Industrie 4.0

Lernziele:
Die Studierenden …

- können die vorgestellten Rahmenbedingungen der Fahrzeugentwicklung nennen und können die Einflüsse dieser auf das Produkt Anhand von Beispielen verdeutlichen.
- können die unterschiedlichen Leichtbauansätze benennen und mögliche Anwendungsfelder aufzeigen.
- sind fähig, die verschiedenen Fertigungsverfahren für die Herstellung von Fahrzeugkomponenten anzugeben und deren Funktionen zu erläutern.
- sind in der Lage, mittels der kennengelernten Verfahren und deren Eigenschaften eine Prozessauswahl durchzuführen.

Arbeitsaufwand:
Präsenzzeit: 25 Stunden
Selbststudium: 95 Stunden

Organisatorisches
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung. Eine Anmeldung über Ilias ist erforderlich.
The lecture is a block course. An application in Ilias is mandatory.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.
Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.226 Teilleistung: Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung [T-MACH-102155]

Verantwortung: Prof. Dr.-Ing. Sama Mbang
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 2

Lehrveranstaltungen

SS 2022
2123364 Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR) 2 SWS Vorlesung / Übung (VÜ) / Mbang

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-102155 Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung Mbang
SS 2022 76-T-MACH-102155 Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung Mbang

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produkt-, Prozess- und Ressourcenintegration in der Fahrzeugentstehung (PPR) 2123364, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

- Überblick zur Fahrzeugentstehung (Prozess- und Arbeitsabläufe, IT-Systeme)
- Integrierte Produktmodelle in der Fahrzeugindustrie (Produkt, Prozess und Ressource Sichten)
- Neue CAx-Modellierungsmethoden (intelligente Feature-Technologie, Template- & Skelett-Methodik, funktionale Modellierung)
- Automatisierung und wissensbasierte Mechanismen in der Konstruktion und Produktionsplanung
- Anforderungs- und Prozessgerechte Fahrzeugentstehung (3D-Master Prinzip, Toleranzmodelle)
- Concurrent Engineering, verteiltes Arbeiten
- Erweiterte Konzepte: Prinzip der digitalen und virtuellen Fabrik (Einsatz virtueller Techniken und Methoden in der Fahrzeugentstehung)

Organisatorisches
Blockveranstaltung

Literaturhinweise
Vorlesungsfolien
3.227 Teilleistung: Produktion, Logistik und Wirtschaftsinformatik [T-WIWI-111602]

Verantwortung: Prof. Dr. Wolf Fichtner
 Prof. Dr. Andreas Geyer-Schulz
 Prof. Dr. Alexander Mädche
 Prof. Dr. Stefan Nickel
 Prof. Dr. Frank Schultmann
 Prof. Dr. Christof Weinhardt

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-105770 - Produktion, Logistik und Wirtschaftsinformatik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
5

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Erfolgskontrolle(n)
3.228 Teilleistung: Produktionsplanung und -steuerung [T-MACH-105470]

Verantwortung: Dr.-Ing. Andreas Rinn

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsort: Prüfungsleistung schriftlich

Leistungspunkte: 4

Notenskala: Drittelnoten

Turnus: Jedes Wintersemester

Version: 1

Lehrveranstaltungen

| WS 21/22 | 2110032 | Produktionsplanung und -steuerung | 2 SWS | Block-Vorlesung (BV) / 🗣 | Rinn |
| SS 2022 | 2110032 | Produktionsplanung und -steuerung | 2 SWS | Block-Vorlesung (BV) / 🗣 | Rinn |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105470 | Produktionsplanung und -steuerung | Deml, Rinn |
| SS 2022 | 76-T-MACH-105470 | Produktionsplanung und -steuerung | Deml |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung 60 Minuten (bei geringer Teilnehmerzahl ist die Prüfung mündlich, 20 Minuten)

Voraussetzungen

Termingerechte Vorabmeldung im ILIAS, da teilnahmebeschränkt.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktionsplanung und -steuerung

2110032, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Block-Vorlesung (BV)

Präsenz

Inhalt

1. Ziele und Rahmenbedingungen der Produktionsplanung und -steuerung
2. Strategien der Arbeitssteuerung
3. Fallbeispiel: Fertigung von Fahrrädern
4. FASI-Plus: Fahrradfabrik-Simulation zur Produktionsplanung und -steuerung
5. Simulation der Auftragsabwicklung in einem Rechnermodell
6. Entscheidungsfundierung zur Betriebsauftragssteuerung und Kaufteilbeschaffung
7. Auswertung der Rückmeldedaten aus Betriebsdatenerfassung und Betriebsabrechnung
8. Realisierungsaspekte der Produktionsplanung und -steuerung

Voraussetzungen:

- Kompaktveranstaltung
- Teilnehmerbeschränkung: die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamten Vorlesung

Empfehlungen:

- Kenntnisse in Produktionsmanagement/Betriebsorganisation/Industrial-Engineering erforderlich
- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft
- Kenntnisse der Betriebs-/Wirtschaftsinformatik nicht erforderlich, aber hilfreich

Lernziele:

- Lerninhalte zum Thema "Produktionsmanagement" vertiefen
- Kenntnisse über die Produktionsplanung und -steuerung erweitern
- Grundlegende Techniken der Modellierung und Simulation von Produktionssystemen verstehen
Organisatorisches
- Anwesenheitspflicht in Einführungsveranstaltung und Blockvorlesung.
- Teilnehmerzahl ist beschränkt.
- Für eine verbindliche Kursteilnahme ist die Prüfungsanmeldung bis 10 Tage vor Veranstaltungsbeginn im ifab-Sekretariat nachzuweisen.
- Die Prüfung ist schriftlich, außer es sind zuwenig Teilnehmer, dann mündlich.
- Die Vorlesung hat einen Arbeitsaufwand von 120 h (=4 LP).

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.

Produktionsplanung und -steuerung
2110032, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Voraussetzungen:
- Kompaktveranstaltung
- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamten Vorlesung

Empfehlungen:
- Kenntnisse in Produktionsmanagement/Betriebsorganisation/Industrial-Engineering erforderlich
- Arbeits- und wirtschaftswissenschaftliche Kenntnisse vorteilhaft
- Kenntnisse der Betriebs-/Wirtschaftsinformatik nicht erforderlich, aber hilfreich

Lernziele:
- Lerninhalte zum Thema "Produktionsmanagement" vertiefen
- Kenntnisse über die Produktionsplanung und -steuerung erweitern
- Grundlegende Techniken der Modellierung und Simulation von Produktionssystemen verstehen

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.229 Teilleistung: Produktionstechnik für die Elektromobilität [T-MACH-110984]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Dr.-Ing. Janna Ruhland

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102618 - Schwerpunkt: Produktionstechnik
M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Grund-/ Übungstitel</th>
<th>Kurzbeschreibung (abschließend)</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2150605 Produktionstechnik für die Elektromobilität</td>
<td>2 SWS</td>
<td>Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Grund-/ Übungstitel</th>
<th>Kurzbeschreibung (abschließend)</th>
<th>SWS</th>
<th>Vorlesung (V) / Präsenz/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110984 Produktionstechnik für die Elektromobilität</td>
<td></td>
<td>Fleischer</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110984 Produktionstechnik für die Elektromobilität</td>
<td></td>
<td>Fleischer</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktionstechnik für die Elektromobilität

V 2150605, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

Die Studierenden sollen im Rahmen der Lehrveranstaltung Produktionstechnik für die Elektromobilität durch den Einsatz forschungsorientierter Lehre befähigt werden Produktionsprozesse zur Herstellung der Komponenten eines elektrischen Antriebsstrangs (Elektromotor, Batteriezellen, Brennstoffzellen) auslegen, auswählen und neu entwickeln zu können.

Lernziele:

Die Studierenden können:

- den Aufbau und die Funktion einer Brennstoffzelle, eines Elektromotors und einer Batterie beschreiben.
- die Prozessketten für die Herstellung der Komponenten Brennstoffzelle, Batterie und Elektromotor wiedergeben.
- methodeische Werkzeuge anwenden um Problemstellungen entlang der Prozesskette zu lösen.
- die Herausforderungen bei der Herstellung von Elektromotoren für die Elektromobilität ableiten.
- anhand der Prozesskette von Li-Ionen Batteriezellen die Einflussfaktoren der einzelnen Prozessschritte aufeinander beschreiben.
- die notwendigen Prozessparameter um den Einflussfaktoren der Prozessschritte bei der Li-Ionen Batteriezellproduktion entgegenzuwirken aufzählen bzw. beschreiben.
- methodeische Werkzeuge anwenden um Problemstellungen entlang der Prozesskette zur Herstellung von Li-Ionen Batteriezellen zu lösen.
- die Herausforderung bei der Montage und Demontage von Batteriemodulen ableiten.
- die Herausforderungen bei der Herstellung von Brennstoffzellen für die Anwendung in der Mobilität ableiten.

Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 78 Stunden
Literaturhinweise
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
3.230 Teilleistung: Produktionstechnisches Labor [T-MACH-105346]

Verantwortung:
- Prof. Dr.-Ing. Barbara Deml
- Prof. Dr.-Ing. Jürgen Fleischer
- Prof. Dr.-Ing. Kai Furmans
- Prof. Dr.-Ing. Jivka Ovtcharova

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation
- KIT-Fakultät für Maschinenbau/Institut für Fördertechnik und Logistiksysteme
- KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
- KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von:
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2110678</td>
<td>Produktionstechnisches Labor</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Deml, Fleischer, Furmans, Ovtcharova</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Vorlesungstitel</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105346</td>
<td>Produktionstechnisches Labor</td>
<td>Deml, Furmans, Ovtcharova, Schulze</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105346</td>
<td>Produktionstechnisches Labor</td>
<td>Deml, Furmans, Ovtcharova, Schulze</td>
</tr>
</tbody>
</table>

Legende:
- Online
- Präsenz/Online gemischt
- Präsenz
- Abgesagt

Erfolgskontrolle(n)

Fachpraktikum: Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Ergänzungsfach: Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien sowie Aufbereitung und Präsentation eines ausgewählten Themas in einem Vortrag.

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:
Inhalt
Das Produktionstechnische Labor (PTL) ist eine gemeinsame Veranstaltung der Institute wbk, IFL, IMI und ifab:

1. Rechnergestützte Produktentwicklung (IMI)
2. Rechnerkommunikation in der Fabrik (IMI)
3. Teilefertigung mit CNC Maschinen (wbk)
4. Ablaufsteuerungen von Fertigungsanlagen (wbk)
5. Automatisierte Montage (wbk)
6. Optische Identifikation in Produktion und Logistik (IFL)
7. RFID-Identifikationssysteme im automatisierten Fabrikbetrieb (IFL)
8. Lager- und Kommissioniertechnik (IFL)
9. Fertigungssteuerung (ifab)
10. Zeitwirtschaft (ifab)
11. Durchführung einer Arbeitsplatzgestaltung (ifab)

Empfehlungen:
Teilnahme an folgenden Vorlesungen:

- Informationssysteme
- Materialflusstechnik
- Fertigungstechnik
- Arbeitswissenschaft

Lernziele:

- vorgegebene Planungs- und Auslegungsprobleme aus den genannten Bereichen lösen,
- die Prozesse auf der Fabrik-, Produktions- und Prozessebene beurteilen und gestalten,
- die Produktion eines Unternehmens der Stückgüterindustrie grundlegend planen, steuern und bewerten,
- die IT-Architektur in einem produzierenden Unternehmen konzipieren und beurteilen,
- die geeignete Förder-, Lager- und Kommissioniertechnik für eine Produktion konzipieren und bewerten,
- Teilefertigung und Montage bezüglich der Abläufe und der Arbeitsplätze auslegen und evaluieren.

Organisatorisches
Anwesenheitspflicht, Teilnehmerzahl begrenzt. Anmeldung über ILIAS
Arbeitsaufwand von 120 h (=4 LP).
Nachweis: bestanden / nicht bestanden
Regelmäßige Teilnahme an Praktikumsversuchen und erfolgreiche Eingangskolloquien.

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.231 Teilleistung: Produktivitätsmanagement in ganzheitlichen Produktionssystemen [T-MACH-105523]

Verantwortung: Prof. Dr.-Ing. Sascha Stowasser
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Arbeitswissenschaft und Betriebsorganisation

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen
SS 2022 2110046 Produktivitätsmanagement in ganzheitlichen Produktionssystemen 2 SWS Block-Vorlesung (BV) / 🗣 Stowasser

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105523 Produktivitätsmanagement in ganzheitlichen Produktionssystemen Deml
SS 2022 76-T-MACH-105523 Produktivitätsmanagement in ganzheitlichen Produktionssystemen Deml, Stowasser

Erfolgskontrolle(n)
mündliche Prüfung (ca. 30 Minuten)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Produktivitätsmanagement in ganzheitlichen Produktionssystemen
2110046, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierenendenportal anzeigen

Inhalt
1. Definition, Begriffe der Arbeitswirtschaft und des Prozessmanagements
2. Aufgabenfelder der Arbeitswirtschaft und des Industrial Engineering
3. Ansätze heutiger Produktionsorganisation (Ganzheitliche Produktionssysteme, geführte Gruppenarbeit u.a.)
4. Moderne Methoden und Prinzipien der Arbeitswirtschaft, des Industrial Engineering und von Produktionssystemen
5. Praxisbeispiele und –übungen zur Analyse und Gestaltung der Prozessgestaltung
6. Industrie 4.0

Voraussetzungen:
- Kompaktveranstaltung (eine Woche ganztägig)
- Teilnehmerbeschränkung; die Vergabe der Plätze erfolgt nach dem Zeitpunkt der Anmeldung
- Voranmeldung über ILIAS erforderlich
- Anwesenheitspflicht in gesamtet Vorlesung

Empfehlungen:
- Arbeitswissenschaftliche Kenntnisse vorteilhaft

Lernziele:
- Befähigung der Studenten zur effektiven und effizienten Arbeitsablauf- und Arbeitsprozessgestaltung
- Ausbildung in arbeitswirtschaftlichen Methoden (MTM-Grundsysten, Prozessbausteine, Datenermittlung u.a.)
- Ausbildung in modernen Methoden und Prinzipien der Arbeitswirtschaft, des IE und von Produktionsystemen
- Die Studierende sind in der Lage, Methoden zur Gestaltung von Arbeitsplätzen und -prozessen praktisch anzuwenden.
- Die Studierende sind in der Lage, moderne Ansätze der Prozess- und Produktionsorganisation anzuwenden.

Literaturhinweise
Das Skript und Literaturhinweise stehen auf ILIAS zum Download zur Verfügung.
3.232 Teilleistung: Programmieraufgaben Bauinformatik I [T-BGU-103397]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101757 - Bauinformatik I
Voraussetzung für: T-BGU-103396 - Bauinformatik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltnamen</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200114</td>
<td>Bauinformatik I</td>
<td>1</td>
<td>Vorlesung (V) / 🖥</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200115</td>
<td>Übungen zu Bauinformatik I</td>
<td>1</td>
<td>Übung (Ü) / 🖥</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltnamen</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231103397</td>
<td>Programmieraufgaben Bauinformatik I</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
3 testierte Programmieraufgaben

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
Teilleistung: Programmieraufgaben Bauinformatik II [T-BGU-103399]

Verantwortung: Prof. Dr.-Ing. Markus Uhlmann
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101758 - Bauinformatik II
Voraussetzung für: T-BGU-103398 - Bauinformatik II

Lehrveranstaltungen
SS 2022 6200422 Bauinformatik II 1 SWS Vorlesung (V) / 🗣 Uhlmann
SS 2022 6200423 Übungen zu Bauinformatik II 1 SWS Übung (Ü) / 🔄 Uhlmann

Prüfungsveranstaltungen
SS 2022 8234103399 Programmieraufgaben Bauinformatik II Uhlmann

Legende: 🔄 Online, 🗣 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
3 testierte Programmieraufgaben

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine
3.234 Teilleistung: Project Workshop: Automotive Engineering [T-MACH-102156]

Verantwortung:
- Dr.-Ing. Michael Frey
- Prof. Dr. Frank Gauterin
- Dr.-Ing. Martin Gießler

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik
- KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik

Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Leistung</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2115817</td>
<td>Project Workshop: Automotive Engineering</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Gauterin, Gießler, Frey</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltungsname</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Gauterin</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102156</td>
<td>Project Workshop: Automotive Engineering</td>
<td>Gauterin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

- mündliche Prüfung
 - Dauer: 30 bis 40 Minuten
 - Hilfsmittel: keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Project Workshop: Automotive Engineering

2115817, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:

Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industrieunternehmen und können das im Studium erworbene Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxistauglich zu entwickeln.
Organisatorisches
Begrenzte Teilnehmerzahl mit Auswahlverfahren, in deutscher Sprache. Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Termin und Raum: siehe Institutshomepage.
Limited number of participants with selection procedure, in German language. Please send the application at the end of the previous semester
Date and room: see homepage of institute.

Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.
The scripts will be supplied in the start-up meeting.

Inhalt
Im Rahmen des Workshops Automotive Engineering wird in einem Team von ca. 6 Personen eine von einem deutschen Industriepartner gestellte Aufgabe bearbeitet. Die Aufgabe stellt für den jeweiligen Partner ein geschäftsrelevantes Thema dar und soll nach dem Abschluss des Workshops im Unternehmen umgesetzt werden.

Das Team erarbeitet dazu eigenständig Lösungsansätze und entwickelt diese zu einer praktikablen Lösung weiter. Hierbei wird das Team sowohl von Mitarbeitern des Unternehmens als auch des Instituts begleitet.

Lernziele:
Die Studierenden kennen den Entwicklungsprozess und die Arbeitsweise in Industrieunternehmen und können das im Studium erworbene Wissen praktisch anwenden. Sie sind befähigt, komplexe Zusammenhänge analysieren und beurteilen zu können. Sie sind in der Lage, sich selbständig mit einer Aufgabe auseinanderzusetzen, unterschiedliche Entwicklungsmethoden anzuwenden und Lösungsansätze auszuarbeiten, um Produkte oder Verfahren praxisgerecht zu entwickeln.

Organisatorisches
Begrenzte Teilnehmerzahl mit Auswahlverfahren, die Bewerbungen sind am Ende des vorhergehenden Semesters einzureichen.
Raum und Termine: s. Aushang bzw. Homepage

Literaturhinweise

Skripte werden beim Start-up Meeting ausgegeben.
3.235 Teilleistung: Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems [T-MACH-105457]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Leistung</th>
<th>SWS</th>
<th>Prüfungsauswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149680</td>
<td>Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems</td>
<td>3</td>
<td>Projektgruppe (Pg) / Schulze</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Leistung</th>
<th>Prüfungsauswertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105457</td>
<td>Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems</td>
<td>Schulze</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105457</td>
<td>Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems</td>
<td>Schulze</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛠 Präsenz/Online gemischt, 🎤 Präsenz, ⌨️ Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung anderer Art (benotet):

- Präsentation (15 min) mit Gewichtung 40%
- Wissenschaftliches Kolloquium (ca. 15 min) mit Gewichtung 40%
- Projektarbeit (benotet) mit Gewichtung 20%

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projekt Mikrofertigung: Entwicklung und Fertigung eines Mikrosystems

2149680, WS 21/22, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)
Projektgruppe (Pg)
Abgesagt
Inhalt

Lernziele:
Die Studierenden …

• können die Verfahren der Mikrofertigung sowie deren Charakteristika und Einsatzgebiete beschreiben.
• sind in der Lage, für Mikro-Bauteile das passende Fertigungsverfahren auszuwählen.
• können die Entstehung eines Produkts entlang der CAD-CAM-Prozesskette von der ersten Idee bis zur Fertigung beschreiben.
• sind in der Lage zu erörtern, wie der Entwicklungsprozess für ein Mikroprodukt aussieht.
• sind fähig zu beschreiben, wie fertigungsgerechte Konstruktion bei Mikroprodukten aussieht und wo der Unterschied zum makroskopischen Bereich liegt.

Arbeitsaufwand:
Präsenzzeit: 31,5 Stunden
Selbststudium: 148,5 Stunden

Organisatorisches
Die Veranstaltung wird im Wintersemester 2021/22 nicht angeboten!

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
Teilleistung: Projektierung und Entwicklung ölhydraulischer Antriebssysteme [T-MACH-105441]

Verantwortung: Dr.-Ing. Isabelle Ays
Dr.-Ing. Gerhard Geerling

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Mobile Arbeitsmaschinen

Bestandteil von:
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102618 - Schwerpunkt: Produktionstechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>WS</th>
<th>Prüfungsveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2113072</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td>2 SWS</td>
<td>Block (B) / 🕊 Geerling, Shenoy</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SS</th>
<th>Prüfungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105441</td>
<td>Projektierung und Entwicklung ölhydraulischer Antriebssysteme</td>
<td></td>
<td>Geimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕊 Präsenz/Online gemischt, 🚗 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (20 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektierung und Entwicklung ölhydraulischer Antriebssysteme

2113072, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt

In der am Lehrstuhl für Mobile Arbeitsmaschinen (Mobima) angebotenen Blockveranstaltung werden die Grundlagen der Projektierung und der Entwicklung mobiler und stationärer hydrostatischer Systeme vermittelt. Der Dozent kommt aus einem marktführenden Unternehmen der fluidtechnischen Antriebs- und Steuerungstechnik und gibt vertiefte Einblicke in den Projektierungs- und Entwicklungsprozess hydrostatischer Systeme an Hand praktischer Beispiele. Die Inhalte der Vorlesung sind:

- Marketing, Planung, Projektierung
- Kreislaufarten Öl-Hydrostatik
- Wärmeaushalt, Hydrospeicher
- Filtration, Geräuschminderung
- Auslegungsübungen + Praxislabor

Kenntnisse in der Fluidtechnik

- Präsenzzeit: 19 Stunden
- Selbststudium: 90 Stunden

Organisatorisches

siehe Homepage
Teilleistung: Projektmanagement (unbenotet) [T-BGU-107449]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101755 - Projektmanagement

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Geschäftstätigkeit</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Projektmanagement</td>
<td>2</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Haghsheno, Schneider</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Geschäftstätigkeit</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Projektmanagement (unbenotet)</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Haghsheno, Schneider</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Projektmanagement (unbenotet)</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Haghsheno, Schneider</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliches Testat, 45 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektmanagement

6200106, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
In diesem Modul wird eine Einführung in die Kompetenzen des Projektmanagements nach ICB4 gegeben. Hierfür werden die drei Kompetenzbereiche Kontext-Kompetenzen, Methoden-Kompetenzen sowie Persönliche und Soziale Kompetenzen mit ihren insgesamt 29 Kompetenzelementen (z. B. Strategie, Termine, Kosten und Teamarbeit) behandelt.

Organisatorisches

Literaturhinweise
- GPM Deutsche Gesellschaft für Projektmanagement e. V. (Hrsg.) (2017) Individual Competence Baseline für Projektmanagement (Version 4.0), 1. Auflage, GPM Deutsche Gesellschaft für Projektmanagement e. V., Nürnberg
3.238 Teilleistung: Projektmanagement in globalen Produktentwicklungsstrukturen [T-MACH-105347]

Verantwortung: Prof. Dr.-Ing. Albert Albers
 Prof. Dr.-Ing. Peter Gutzmer
 Prof. Dr.-Ing. Sven Matthiesen

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
 M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Albers</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>2</td>
<td>mündliche (20 min)</td>
<td>Gutzmer, Albers</td>
</tr>
<tr>
<td>SS 2022</td>
<td>Projektmanagement in globalen Produktentwicklungsstrukturen</td>
<td>2</td>
<td>mündliche (20 min)</td>
<td>Gutzmer, Albers</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

mündliche Prüfung (20 min)
Hilfsmittel: Keine

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Projektmanagement in globalen Produktentwicklungsstrukturen
 2145182, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Vorlesung (V)
Inhalt
Nachweis:
mündliche Prüfung
Dauer: 20 Minuten
Hilfsmittel: keine
Nachweis (EN):
Oral examination
Duration: 20 minutes
Auxiliary means: none
Lehrinhalt:
Produktentwicklungsprozess
Koordination von Entwicklungsprozessen
Komplexitätsbeherrschung
Projektmanagement
Matrixorganisation
Planung / Lastenheft / Zielsystem
Wechselspiel von Entwicklung und Produktion
Lehrinhalt (EN):
Product development process
Coordination of product development and handling of complexity
project management
matrix organization
planning / specification / target system
interaction of development and production
Voraussetzungen:
keine
Voraussetzungen (EN):
none
Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 99 h
Arbeitsaufwand (EN):
regular attendance: 21 h
self-study: 99 h
Lernziele:
In erfolgreichen Unternehmen spielt das Management von Projekten eine entscheidende Rolle.
Die Studierenden können Eigenschaften und Merkmale von Produktentstehungsprozessen anhand von Industribeispielen beschreiben, erläutern und vergleichen.
Sie sind in der Lage, Prozesse der Produktentwicklung sowie dafür notwendige Organisationsstrukturen anzugeben und wichtige Merkmale herauszustellen.
Die Teilnehmer lernen somit, Aspekte des Projektmanagements global agierender Unternehmen zu identifizieren und zu bewerten.
Lernziele (EN):
Project management is essential for successful companies.
The students are able to describe, explain and compare characteristics and attributes of product development processes based on practical examples of industry.
They are able to specify processes of product development, their necessary organization structures and important attributes.
The participants learn to identify and evaluate aspects of product management within international operating companies.
Organisatorisches
Die Lehrveranstaltung wird nicht mehr angeboten.
Literaturhinweise
Vorlesungsumdruck
3.239 Teilleistung: Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils [T-MACH-110960]

Verantwortung: Dr.-Ing. Frederik Zanger

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik

Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehre

Lehrveranstaltungen
WS 21/22 2149700 Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils 2 SWS Praktikum (P) / 🧩 Zanger, Lubkowitz

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-110960 Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils Zanger

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):
- Meilensteinbasierte Vorstellung der Ergebnisse in Präsentationsform (10 min) und Abgabe der Präsentationsdatei mit Gewichtung 30%
- Mündliche Prüfung (15 min) mit Gewichtung 40%
- Projektarbeit mit Gewichtung 30%

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils
2149700, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt
Inhalt
Die Lehrveranstaltung „Projektpraktikum Additive Fertigung: Entwicklung und Fertigung eines additiven Bauteils“ verbindet die Grundlagen des metallischen pulverbettbasierten Laserschmelzens (engl. LPBF) mit einem Entwicklungsprojekt in Zusammenarbeit mit einem Industrieunternehmen.

Die Studierenden lernen dabei in der projektbegleitenden Lehrveranstaltung die Grundlagen zu folgenden Themen:

- Einfluss von verschiedenen Prozessstellgrößen auf die Bauteilqualität im LPBF-Prozess gefertigter Teile
- Vorbereitung und Simulation des LPBF-Prozesses
- Herstellung additiver metallischer Bauteile
- Prozessüberwachung und Qualitätssicherung in der additiven Fertigung
- Topologieoptimierung
- CAM für die subtraktive Nacharbeit

Die in der Lehrveranstaltung angeschnittenen Themen werden in verschiedenen Workshops zu den einzelnen Themen praktisch angewandt und in Eigenarbeit auf die Entwicklungsaufgabe übertragen. Abschließend werden die Ergebnisse der Ausarbeitungen additiv hergestellt und subtraktiv nachbearbeitet.

Lernziele:
Die Studierenden …

- können die Charakteristika und Einsatzgebiete der additiven Herstellverfahren pulverbettbasiertes Laserschmelzen (engl. LPBF) und Lithography-based Ceramic Manufacturing (LCM) beschreiben.
- sind in der Lage, das passende Fertigungsverfahren für eine technische Anwendung auszuwählen.
- können die Entstehung eines Produkts entlang der vollständigen additiven Prozesskette (CAD, Simulation, Baujob Vorbereitung, CAM) von der ersten Idee bis zur Fertigung beschreiben und umsetzen.
- sind in der Lage, zu erörtern, wie der Entwicklungsprozess für Bauteile aussieht, die für die additive Fertigung optimiert sind.
- sind in der Lage, eine Topologieoptimierung durchzuführen.
- sind in der Lage, den additiven Prozess zu simulieren, den prozessbedingten Verzug zu kompensieren und die ideale Ausrichtung auf der Bauplattform festzulegen.
- sind in der Lage, notwendige Stützstrukturen für den additiven Prozess zu erstellen und eine Baujobdatei abzuleiten.
- sind in der Lage, ein CAM-Modell für die subtraktive Nacharbeit additiver Bauteile zu erstellen.

Arbeitsaufwand:
Präsenzzeit: 12 Stunden
Selbststudium: 108 Stunden

Organisatorisches
Termine werden über Ilias bekannt gegeben.
Bei der Vorlesung handelt es sich um eine Blockveranstaltung.
Eine Anmeldung über Ilias ist erforderlich.
Dates will be announced via Ilias.
The lecture is a block event.
A registration via Ilias is required.

Literaturhinweise
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/)
3.240 Teilleistung: Proseminar Mathematik [T-MATH-103404]

Verantwortung: PD Dr. Stefan Kühnlein
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-101313 - Proseminar Mathematik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7700023</td>
<td>Proseminar Mathematik</td>
<td>Kühnlein</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7700027</td>
<td>Proseminar Mathematik</td>
<td>Kühnlein</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.241 Teilleistung: Prüfungsvorleistung Dynamik [T-BGU-111041]

Verantwortung: Prof. Dr.-Ing. Peter Betsch
Prof. Dr.-Ing. Thomas Seelig

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101747 - Dynamik

Voraussetzung für: T-BGU-103379 - Dynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent(in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Dynamik</td>
<td>2</td>
<td>Vorlesung (V) / 📚</td>
<td>Seelig</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Übungen zu Dynamik</td>
<td>2</td>
<td>Übung (Ü) / 📚</td>
<td>Mitarbeiter/innen</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Tutorien zu Dynamik</td>
<td>2</td>
<td>Tutorium (Tu) / 📚</td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | Prüfungsvorleistung Dynamik | 8233111041 | Betsch, Seelig |

Legende:
- 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n):
bearbeitung von 3 Übungsaufgaben

Voraussetzungen:
keine

Empfehlungen:
keine

Anmerkungen:
keine
3.242 Teilleistung: Prüfungsvorleistung Hydromechanik [T-BGU-107586]

Verantwortung: Prof. Dr. Olivier Eiff
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101748 - Hydromechanik
Voraussetzung für: T-BGU-103380 - Hydromechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200304</td>
<td>Hydromechanik</td>
<td>2</td>
<td>Vorlesung (V) / 🗣</td>
<td>Eiff</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200305</td>
<td>Übungen zu Hydromechanik</td>
<td>2</td>
<td>Übung (Ü) / 🧩</td>
<td>Dupuis</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200306</td>
<td>Tutorien zu Hydromechanik</td>
<td>2</td>
<td>Tutorium (Tu) / 🗣</td>
<td>Eiff, Dupuis, Tutoren</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Prüfungsvorleistung Hydromechanik</th>
<th>Betreuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8233107586</td>
<td></td>
<td>Eiff</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Bearbeitung von 3 Übungsaufgaben

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
Teilleistung: PS Anwendung Trainingswissenschaft [T-GEISTSOZ-103286]

Verantwortung:
Sina Spancken

Einrichtung:
KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft

Bestandteil von:
M-GEISTSOZ-103280 - Bewegung und Training - IngPäd

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5016206</td>
<td>Anwendung Trainingswissenschaft - A</td>
<td>1</td>
<td>Proseminar (PS) / Seminar</td>
<td>Spancken</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5016216</td>
<td>Anwendung Trainingswissenschaft - B</td>
<td>1</td>
<td>Proseminar (PS) / Seminar</td>
<td>Spancken</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5016226</td>
<td>Anwendung Trainingswissenschaft - C</td>
<td>1</td>
<td>Proseminar (PS) / Seminar</td>
<td>Spancken</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016206</td>
<td>Anwendung Trainingswissenschaft - A</td>
<td>1</td>
<td>Proseminar / Seminar (PS)</td>
<td>Spancken</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016216</td>
<td>Anwendung Trainingswissenschaft - B</td>
<td>1</td>
<td>Proseminar / Seminar (PS)</td>
<td>Spancken</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016226</td>
<td>Anwendung Trainingswissenschaft - C</td>
<td>1</td>
<td>Proseminar / Seminar (PS)</td>
<td>Spancken</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Prüfungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400011</td>
<td>PS Anwendung Trainingswissenschaft</td>
<td>Stein</td>
</tr>
</tbody>
</table>

Legende: 🇺 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Anwendung Trainingswissenschaft - A

5016206, WS 21/22, 1 SWS, [Im Studierendenportal anzeigen](#)

Inhalt

Lerninhalt:
In der Lehrveranstaltung werden die Inhalte aus der Vorlesung bezogen auf unterschiedliche Anwendungsfelder (z.B. z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) der Trainingswissenschaft diskutiert und vertieft. Dafür müssen die Studierenden themenspezifisch Kurzreferate vorbereiten, in denen Sie aktuelle nationale und internationale Fachliteratur aufbereiten, präsentieren und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.

Arbeitsaufwand:
1. Präsenzzeiten im PS: 15 Stunden
2. Projektarbeit im PS: 30 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 15 Stunden

Lernziele:
Die Studierenden
- können die erarbeiteten Grundlagen auf die Anwendungsfelder der Trainingswissenschaft (z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) übertragen.
- können themenbezogen ausgewählte trainingswissenschaftliche Literatur aus deutschen und englischsprachigen Fachzeitschriften und Lehrbüchern recherchieren, verstehen, darstellen und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.
- können die erarbeiteten Inhalte in Form eines Vortrags präsentieren
Inhalt

Lerninhalt:

In der Lehrveranstaltung werden die Inhalte aus der Vorlesung bezogen auf unterschiedliche Anwendungsfelder (z.B. z.B. Schulsport, Gesundheitssport, Alterssport, Fitmesssport und Leistungssport) der Trainingswissenschaft diskutiert und vertieft. Dafür müssen die Studierenden themenspezifisch Kurzreferate vorbereiten, in denen Sie aktuelle nationale und internationale Fachliteratur aufbereiten, präsentieren und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.

Arbeitsaufwand:

1. Präsenzzeiten im PS: 15 Stunden
2. Projektarbeit im PS: 30 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 15 Stunden

Lernziele:

Die Studierenden
- können die erarbeiteten Grundlagen auf die Anwendungsfelder der Trainingswissenschaft (z.B. Schulsport, Gesundheitssport, Alterssport, Fitmesssport und Leistungssport) übertragen.
- können themenbezogen ausgewählte trainingswissenschaftliche Literatur aus deutschen und englischsprachigen Fachzeitschriften und Lehrbüchern recherchieren, verstehen, darstellen und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.
- können die erarbeiteten Inhalte in Form eines Vortrags präsentieren
Inhalt
Lerninhalt:
In der Lehrveranstaltung werden die Inhalte aus der Vorlesung bezogen auf unterschiedliche Anwendungsfelder (z.B. z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) der Trainingssportwissenschaft diskutiert und vertieft. Dafür müssen die Studierenden themenspezifisch Kurzreferate vorbereiten, in denen Sie aktuelle nationale und internationale Fachliteratur aufbereiten, präsentieren und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.

Arbeitsaufwand:
Präsenzzeiten im PS: 15 Stunden
Projektarbeit im PS: 30 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 15 Stunden

Lernziele:
Die Studierenden
- können die erarbeiteten Grundlagen auf die Anwendungsfelder der Trainingssportwissenschaft (z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) übertragen.
- können themenbezogen ausgewählte trainingssportwissenschaftliche Literatur aus deutschen und englischsprachigen Fachzeitschriften und Lehrbüchern recherchieren, verstehen, darstellen und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.
- können die erarbeiteten Inhalte in Form eines Vortrags präsentieren

Literaturhinweise

Anwendung Trainingswissenschaft - B
5016216, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:
In der Lehrveranstaltung werden die Inhalte aus der Vorlesung bezogen auf unterschiedliche Anwendungsfelder (z.B. z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) der Trainingssportwissenschaft diskutiert und vertieft. Dafür müssen die Studierenden themenspezifisch Kurzreferate vorbereiten, in denen Sie aktuelle nationale und internationale Fachliteratur aufbereiten, präsentieren und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.

Arbeitsaufwand:
Präsenzzeiten im PS: 15 Stunden
Projektarbeit im PS: 30 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 15 Stunden

Lernziele:
Die Studierenden
- können die erarbeiteten Grundlagen auf die Anwendungsfelder der Trainingssportwissenschaft (z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) übertragen.
- können themenbezogen ausgewählte trainingssportwissenschaftliche Literatur aus deutschen und englischsprachigen Fachzeitschriften und Lehrbüchern recherchieren, verstehen, darstellen und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.
- können die erarbeiteten Inhalte in Form eines Vortrags präsentieren
Literaturhinweise

Inhalt

Lerninhalt:
In der Lehrveranstaltung werden die Inhalte aus der Vorlesung bezogen auf unterschiedliche Anwendungsfelder (z.B. z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) der Trainingswissenschaft diskutiert und vertieft. Dafür müssen die Studierenden themenspezifisch Kurzreferate vorbereiten, in denen Sie aktuelle nationale und internationale Fachliteratur aufbereiten, präsentieren und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.

Arbeitsaufwand:
- Präsenzzeiten im PS: 15 Stunden
- Projektarbeit im PS: 30 Stunden
- Klausurvorbereitung und Präsenzzeit in der Klausur: 15 Stunden

Lernziele:
- Die Studierenden können die erarbeiteten Grundlagen auf die Anwendungsfelder der Trainingswissenschaft (z.B. Schulsport, Gesundheitssport, Alterssport, Fitnesssport und Leistungssport) übertragen.
- Die Studierenden können themenbezogen ausgewählte trainingswissenschaftliche Literatur aus deutschen und englischsprachigen Fachzeitschriften und Lehrbüchern recherchieren, verstehen, darstellen und mit ihren Kommilitonen mit Unterstützung des Dozenten kritisch diskutieren.
- Die Studierenden können die erarbeiteten Inhalte in Form eines Vortrags präsentieren.
T 3.244 Teilleistung: Python Algorithmus für Fahrzeugtechnik [T-MACH-110796]

| Verantwortung: | Stephan Rhode |
| Einrichtung: | KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Fahrzeugtechnik |
| Bestandteil von: | M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik |

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2114862</td>
<td>Python Algorithmen für Fahrzeugtechnik</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🖥</td>
<td>Rhode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
</tr>
<tr>
<td>SS 2022</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- schriftliche Prüfung
- Dauer: 90 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Python Algorithmen für Fahrzeugtechnik

<table>
<thead>
<tr>
<th>Vorlesungsnummer</th>
<th>SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2114862</td>
<td>V Online</td>
</tr>
</tbody>
</table>

Inhalt

Lehrinhalt:

- Einführung in Python und nützliche Tools und Bibliotheken zur Algorithmenerstellung, grafischen Darstellung, Optimierung, symbolischen Rechnen und Maschinellem Lernen
 - Anaconda, Pycharm, Jupyter
 - NumPy, Matplotlib, SymPy, Sciki-Learn
- Methoden und Tools zur Erstellung von Software
 - Versionsverwaltung GitHub, git
 - Testen von Software pytest, Pylint
 - Dokumentation Sphinx
 - Continuous Integration (CI) Travis CI
 - Workflow in Open Source und Inner Source, Kanban, Scrum
- Praktische Programmierprojekte zur:
 - Erkennung von Straßenschildern
 - Schätzung von Fahrzeugzuständen
 - Kalibrierung von Fahrzeugmodellen durch Mathematische Optimierung
 - Datenbasierte Modellierung des Antriebsstranges eines Elektrofahrzeuges

Lernziele:

Organisatorisches
Die Vorlesung findet digital über ILIAS statt. Die Rücksprache Termine finden in Präsenz am Campus Ost, Geb. 70.04, Raum 219 statt.
Termine hierzu werden noch bekannt gegeben.

Literaturhinweise

- A Whirlwind Tour of Python, Jake VanderPlas, Publisher: O'Reilly Media, Inc. Release Date: August 2016, ISBN: 9781492037859, link
- Introduction to Machine Learning with Python, Sarah Guido, Andreas C. Müller, Publisher: O'Reilly Media, Inc., Release Date: October 2016, ISBN: 9781449369880, link
3.245 Teilleistung: Qualität der beruflichen Bildung [T-GEISTSOZ-101140]

Verantwortung: Dr. Karl-Otto Döbber
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100659 - Planung beruflicher Bildung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualität der beruflichen Bildung (IP, Päd)</td>
<td>2 SWS</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 5012124</td>
<td>Qualität der beruflichen Bildung (IP, Päd)</td>
<td>2 SWS</td>
<td>Döbber</td>
</tr>
<tr>
<td>WS 21/22 7400189</td>
<td>Qualität der beruflichen Bildung</td>
<td></td>
<td>Döbber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen
keine
3.246 Teilleistung: Qualität von Lehrveranstaltungen entwickeln [T-GEISTSOZ-101137]

Verantwortung: Dr. Karl-Otto Döbber
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100659 - Planung beruflicher Bildung

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>5012111</th>
<th>Qualität von Lehrveranstaltungen entwickeln</th>
<th>2 SWS</th>
<th>Seminar (S) / 🗣️</th>
<th>Döbber</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>7400326</th>
<th>Qualität von Lehrveranstaltungen entwickeln</th>
<th>Döbber</th>
</tr>
</thead>
</table>

Legende: 📱 Online, 🗣️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Studieneistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Qualität von Lehrveranstaltungen entwickeln

5012111, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lernziele

Die Arbeit an einem Fallbeispiel im Sinne eines „Praxisforschungsprojektes“ ermöglicht Einsichten in die praktische Qualitätsentwicklung von Lehr-/Lernveranstaltungen. Dabei werden alle Schritte eines Entwicklungsprozesses an einem simulierten Projekt eigenständig geplant und umgesetzt.

Inhalte

Voraussetzungen für ECTS-Nachweis (Studieneistung): regelmäßige aktive Beteiligung, schriftlicher Leistungsnachweis durch Mitwirkung an den verteilten schriftlichen Projektaufgaben.

Organisatorisches

Anmeldung und weitere Informationen ab 01.04.2022 unter https://studium.kit.edu oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
3.247 Teilleistung: Qualitätsmanagement [T-MACH-102107]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungskategorie</th>
<th>Ersatzveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2149667</td>
<td>Qualitätsmanagement</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungs-ID</th>
<th>Lehrveranstaltung</th>
<th>Ersatzveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>Lanza</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102107</td>
<td>Qualitätsmanagement</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (60 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Qualitätsmanagement
2149667, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Auf Basis der Qualitätsphilosophien Total Quality Management (TQM) und Six-Sigma wird in der Vorlesung speziell auf die Bedürfnisse eines modernen Qualitätsmanagements eingegangen. In diesem Rahmen werden intensiv der Prozessgedanke in einer modernen Unternehmung und die prozessspezifischen Einsatzgebiete von Qualitätssicherungsmöglichkeiten vorgestellt. Präventive sowie nicht-präventive Qualitätsmanagementmethoden, die heute in der betrieblichen Praxis Stand der Technik sind, sind neben Fertigungsmesstechnik, statistischer Methoden und servicebezogenem Qualitätsmanagement Inhalt der Vorlesung. Abgerundet werden die Inhalte durch die Vorstellung von Zertifizierungsmöglichkeiten und rechtlichen Aspekten im Qualitätsbereich.

Inhaltliche Schwerpunkte der Vorlesung:

- Der Begriff "Qualität"
- Total Quality Management (TQM) und Six-Sigma
- Universelle Methoden und Werkzeuge
- QM in frühen Produktphasen - Produktdefinition
- QM in Produktentwicklung und Beschaffung
- QM in der Produktion - Fertigungsmesstechnik
- QM in der Produktion - Statistische Methoden
- QM im Service
- Qualitätsmanagementsysteme
- Rechtliche Aspekte im QM

Lernziele:

Die Studierenden …

- sind fähig, die vorgestellten Inhalte zu erläutern.
- sind in der Lage, die wesentlichen Qualitätsphilosophien zu erläutern und voneinander abzugrenzen.
- können die in der Vorlesung erlernten Werkzeuge und Methoden des QM auf neue Problemstellungen aus dem Kontext der Vorlesung anwenden.
- sind in der Lage, die Eignung der erlernten Methoden, Verfahren und Techniken für eine bestimmte Problemstellung zu analysieren und zu beurteilen.

Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 99 Stunden

Organisatorisches

Start: 18.10.2021

Vorlesungstermine montags 10:00 Uhr
Übung erfolgt während der Vorlesung

Literaturhinweise

Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt:

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.248 Teilleistung: Rechnergestützte Fahrzeugdynamik [T-MACH-105350]

Verantwortung: Prof. Dr.-Ing. Carsten Proppe
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Sommersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Prüfungslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2162256</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>2162256</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Sommersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsname</th>
<th>Prüfungslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>Proppe</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105350</td>
<td>Rechnergestützte Fahrzeugdynamik</td>
<td>Proppe</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 📐 Online, 🎫 Präsenz/Online gemischt, 🕵️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Rechnergestützte Fahrzeugdynamik

2162256, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrweg
4. Fahrweganregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise

Rechnergestützte Fahrzeugdynamik

2162256, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V) Online
Inhalt

1. Einleitung
2. Modelle für Trag- und Führsysteme
3. Kontaktkräfte zwischen Rad und Fahrweg
4. Fahrwegsanregungen
5. Gesamtfahrzeugmodelle
6. Berechnungsmethoden
7. Beurteilungskriterien

Literaturhinweise
3.249 Teilleistung: Recht und Organisation der beruflichen Bildung [T-GEISTSOZ-100993]

Verantwortung: Dr. Karl-Otto Döbber
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100639 - Organisation und Handlungsfelder der beruflichen Bildung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester 21/22</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>WS</th>
<th>Vorlesung (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>5012103</td>
<td>Recht und Organisation der beruflichen Bildung (IPBSc, PädBA, eWf)</td>
<td>2 SWS</td>
<td>Döbber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Sommersemester 21/22</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400276</td>
<td>Recht und Organisation der beruflichen Bildung</td>
<td>Döbber</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
schriftliche Prüfung (Klausur) im Umfang von 90 Minuten. Änderungen bleiben den Dozenten nach Vorankündigung vorbehalten.

Voraussetzungen
keine
3.250 Teilleistung: Regelung elektrischer Antriebe [T-ETIT-100712]

Verantwortung: Dr.-Ing. Klaus-Peter Becker
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100395 - Regelung elektrischer Antriebe

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Termin</th>
<th>Vorlesungs-Nr.</th>
<th>Vorlesungs-Name</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7306312</td>
<td>Regelung elektrischer Antriebe</td>
<td></td>
<td>Liske</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7306312</td>
<td>Regelung elektrischer Antriebe</td>
<td></td>
<td>Liske</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (20 Minuten).

Voraussetzungen

keine
3.251 Teilleistung: Schulpraktikum (4 Wochen) [T-GEISTSOZ-109721]

Einrichtung:
KiT-Fakultät für Geistes- und Sozialwissenschaften
Universität gesamt

Bestandteil von:
M-GEISTSOZ-104761 - Schulpraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>5</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| SS 2022 | 7400471 | Schulpraktikum (4 Wochen) | Gidion |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form eines Stundennachweises (nach Landesvorgaben). Außerdem bilden die Praktikumserfahrungen einen wesentlichen Bestandteil der Modulprüfung.

Voraussetzungen

keine

Empfehlungen

Das "Vorbereitende Seminar zum Berufspädagogischen bzw. Schul-Praktikum" sollte erfolgreich abgeschlossen sein.
3.252 Teilleistung: Schweißtechnik [T-MACH-105170]

Verantwortung: Dr. Majid Farajian
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Angewandte Materialien/Computational Materials Science
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Block (B)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2173571</td>
<td>Schweißtechnik</td>
<td>2</td>
<td>Block (B)</td>
<td>Farajian</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsname</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105170</td>
<td>Schweißtechnik</td>
<td>2</td>
<td>Farajian</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105170</td>
<td>Schweißtechnik</td>
<td>2</td>
<td>Farajian</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 20 Minuten

Voraussetzungen

keine

Empfehlungen

Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), Werkstoffe, Verfahren und Fertigung, Konstruktive Gestaltung der Bauteile.

Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Schweißtechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsname</th>
<th>Sprache</th>
<th>Online</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2173571</td>
<td>Schweißtechnik</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>
Inhalt
Definition, Anwendung und Abgrenzung: Schweißen, Schweißverfahren, alternative Fügeverfahren.
Geschichte der Schweißtechnik
Energiequellen der Schweißverfahren
Übersicht: Schmelzschweiß- und Pressschweißverfahren.
Nahtvorbereitung / Nahtformen
Schweißpositionen
Schweißbarkeit
Gasschmelzschweißen, Thermisches Trennen
Lichtbogenhandschweißen
Unterpulverschweißen
Metallschutzgasschweißen
Rührreibschweißen/Laserstrahlschweißen
Elektronenstrahlschweißen
Sonstige Schmelz- und Pressschweißverfahren
Übersicht: Schmelz- und Pressschweißverfahren.
Statische und zyklische Festigkeit von Schweißverbindungen
Maßnahmen zur Steigerung der Lebensdauer von Schweißverbindungen

Lernziele:
Die Studierenden können die wichtigsten Schweißverfahren und deren Einsatz/Anwendung in Industrie und Handwerk nennen, beschreiben und miteinander vergleichen.
Sie kennen, verstehen und beherrschen wesentliche Probleme bei Anwendung der verschiedenen Schweißtechnologien in Bezug auf Konstruktion, Werkstoffe und Fertigung.
Sie verstehen die Einordnung und Bedeutung der Schweißtechnik im Rahmen der Fügetechnik und können Vorteile/Nachteile und Alternativen nennen, analysieren und beurteilen.
Die Studierenden bekommen auch einen Einblick in die Schweißnahtqualität und deren Einfluss auf die Performance und Verhalten von Schweißverbindungen unter statischer und zyklischer Beanspruchung.
Wie die Lebensdauer von Schweißverbindungen erhöht werden kann, ist auch ein Bestandteil dieser Lehrveranstaltung.

Voraussetzungen:
Grundlagen der Werkstoffkunde (Eisen und NE-Legierungen), der Elektrotechnik, der Produktions-/Fertigungstechnologien

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung Schweißtechnik beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (18 h) sowie Vor- und Nachbearbeitungszeit zuhause (102 h).

Prüfung:
mündlich, ca 20 Minuten, keine Hilfsmittel

Organisatorisches
Blockveranstaltung im Januar und Februar. Zur Teilnahme an der Vorlesung ist eine Anmeldung beim Dozenten per E-Mail an Farajian@slv-duisburg.de erforderlich: Vorlesungstermine und Hörsaal werden den angemeldeten Teilnehmern Anfang des Jahres mitgeteilt.

Literaturhinweise
Für ergänzende, vertiefende Studien gibt das
Handbuch der Schweißtechnik von J. Ruge, Springer Verlag Berlin, mit seinen vier Bänden
Band I: Werkstoffe
Band II: Verfahren und Fertigung
Band III: Konstruktive Gestaltung der Bauteile
Band IV: Berechnung der Verbindungen

nen einen umfassenden Überblick. Der Stoff der Vorlesung Schweißtechnik findet sich in den Bänden I und II. Einen kompakten Einblick in die Lichtbogenschweißverfahren bietet das Bändchen

Nies: Lichtbogenschweißtechnik, Bibliothek der Technik Band 57, Verlag moderne Industrie AG und Co., Landsberg / Lech

Im Übrigen sei auf die zahlreichen Fachbücher des DVS Verlages, Düsseldorf, zu allen Einzelgebieten der Fügetechnik verwiesen.
3.253 Teilleistung: Selbstverständnis der Berufspädagogik [T-GEISTSOZ-108355]

Verantwortung: Vertretung der Professur für Berufspädagogik
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100612 - Berufspädagogische Grundlagen

Teilleistungsart

<table>
<thead>
<tr>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übungstitel</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5000450</td>
<td>Selbstverständnis der Berufspädagogik: Female Empowerment – Frauen in Arbeit: fällt leider aus!</td>
<td>SWS</td>
<td>Seminar (S)</td>
<td>Götz</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012105 A</td>
<td>Selbstverständnis der Berufspädagogik - Steuerungsprozesse in der Beruflichen Bildung (IPBSc, PädBA, eWf)</td>
<td>2 SWS</td>
<td>Hauptseminar (HS)</td>
<td>Mozer</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012110 B</td>
<td>Kreativität und Kreativitätsforschung (IPMSc, PädMA)</td>
<td>2 SWS</td>
<td>Block (B)</td>
<td>Steckelberg</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Übungstitel</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400282</td>
<td>Klassische Positionen der Berufspädagogik</td>
<td>Gidion</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7400543</td>
<td>Selbstverständnis der Berufspädagogik</td>
<td>Mozer</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Anmerkungen

Unter diesem Titel werden diverse Lehrveranstaltungen angeboten, wobei das Angebot von Semester zu Semester unterschiedlich aussehen kann.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Selbstverständnis der Berufspädagogik - Steuerungsprozesse in der Beruflichen Bildung (IPBSc, PädBA, eWf)

5012105 A, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](https://ilias.studium.kit.edu)

Inhalt

Aktuelle Informationen sowie Bekanntgabe der Termine und Anmeldung ab 01.10. unter https://ilias.studium.kit.edu

Organisatorisches

Aktuelle Informationen sowie Bekanntgabe der Termine und Anmeldung ab 01.10. unter https://ilias.studium.kit.edu
3.254 Teilleistung: Seminar Data-Mining in der Produktion [T-MACH-108737]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Prüfungsart</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2151643</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>2 SWS</td>
<td>Seminar (S) / 🪪</td>
<td>Lanza</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2151643</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>2 SWS</td>
<td>Seminar (S) / 🪪</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-108737</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>Lanza</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-108737</td>
<td>Seminar Data-Mining in der Produktion</td>
<td>Lanza</td>
</tr>
</tbody>
</table>

Legende: 🪪 Online, 🪪 Präsenz/Online gemischt, 🗣 Präsenz, ☢ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet):

- schriftliche Ausarbeitung (min. 80 Std. Arbeitsaufwand)
- Ergebnispräsentation (ca. 30 min)

Voraussetzungen
keine

Anmerkungen

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| Seminar Data-Mining in der Produktion | 2151643, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen |

Seminar (S) | Präsenz/Online gemischt
Inhalt

Lernziele:
Die Studierenden …

- können verschiedene Methoden, Vorgehensweisen und Techniken der Produktionsdatenanalyse nennen, beschreiben und voneinander abgrenzen.
- können grundlegende Datenanalysen mit dem Data-Mining Tool KNIME durchführen.
- können die Ergebnisse der Datenanalysen im Produktionsumfeld analysieren und bewerten.
- sind in der Lage, geeignete Handlungsempfehlungen abzuleiten.
- sind in der Lage, das CRISP-DM Modell zu erläutern und anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 10 Stunden
Selbststudium: 80 Stunden

Organisatorisches

The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Literaturhinweise
Medien:
KNIME Analytics Platform

Media:
KNIME Analytics Platform

Seminar Data-Mining in der Produktion
2151643, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Lernziele:
Die Studierenden …

- können verschiedene Methoden, Vorgehensweisen und Techniken der Produktionsdatenanalyse nennen, beschreiben und voneinander abgrenzen.
- können grundlegende Datenanalysen mit dem Data-Mining Tool KNIME durchführen.
- können die Ergebnisse der Datenanalysen im Produktionsumfeld analysieren und bewerten.
- sind in der Lage, geeignete Handlungsempfehlungen abzuleiten.
- sind in der Lage, das CRISP-DM Modell zu erläutern und anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 10 Stunden
Selbststudium: 80 Stunden
Organisatorisches

The number of students is limited to twelve. Dates and deadlines for the seminar will be announced at https://www.wbk.kit.edu/studium-und-lehre.php.

Literaturhinweise
Medien:
KNIME Analytics Platform

Media:
KNIME Analytics Platform
3.255 Teilleistung: Signale und Systeme [T-ETIT-109313]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104525 - Signale und Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsschriftlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
- WS 21/22 2302109 Signale und Systeme 2 SWS Vorlesung (V) / Online Heizmann
- SS 2022 7302109 Signale und Systeme Heizmann

Prüfungsveranstaltungen
- WS 21/22 7302109 Signale und Systeme Heizmann
- SS 2022 7302109 Signale und Systeme Heizmann

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
Keine

Empfehlungen
Höhere Mathematik I + II
3.256 Teilleistung: Signale und Systeme - Workshop [T-ETIT-109314]

Verantwortung: Prof. Dr.-Ing. Michael Heizmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-104525 - Signale und Systeme

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen
- SS 2022 2302905 Signale und Systeme - Workshop 1 SWS Praktikum (P) / 🧩 Heizmann

Prüfungsveranstaltungen
- WS 21/22 73020314 Signale und Systeme - Workshop Heizmann
- SS 2022 7302314 Signale und Systeme - Workshop Heizmann

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
Keine

Empfehlungen
Höhere Mathematik I + II

Anmerkungen
Wird ab dem Sommersemester 2021 im Sommer statt Winter angeboten.
Im Wintersemester 2020/2021 findet der Workshop nicht statt.
3.257 Teilleistung: Simulation optischer Systeme [T-MACH-105990]

Verantwortung: PD Dr.-Ing. Ingo Sieber
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2105018</td>
<td>Simulation optischer Systeme</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣 Sieber</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105990</td>
<td>Simulation optischer Systeme</td>
<td>Sieber</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105990</td>
<td>Simulation optischer Systeme</td>
<td>Sieber</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: ca. 30min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Simulation optischer Systeme
2105018, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt

Lernziele:
Die Studierenden sollen:

- kennen die Grundlagen der optischen Modellbildung und Simulation.
- kennen die Grundlagen von Modellbildung und Simulation mittels Finiter Elemente.
- kennen die Grundlagen des optischen und mechanischen Entwurfsprozesses und können sie auf einfache optische Subsysteme anwenden.
- können die Spezifikationen optischer Systeme verstehen und können sie im optischen Modell umsetzen.
- können Entwurfsregeln anwenden.
- können einfache Toleranzanalysen vornehmen.
- können die Notwendigkeit einer domänenübergreifenden Simulation beurteilen.

Literaturhinweise
Inhalt

Organisatorisches
MSc.-Studierende der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
Doktoranden der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
MSc.-Studierende werden prioritisiert.

Vorkenntnisse: Numerische Strömungsmechanik, SPH-Methode, LINUX

Die Veranstaltung ist ein Blockpraktikum. Dauer: 5 Tage (Mo-Fr) - je 8 Std.
Veranstaltungsort: Seminarraum I des Geb. 30.60 (neben der Mensa), 2. OG
Zeitraum: Ende Februar bis Anfang März - jährlich. Siehe Internetseite des Instituts.

Veranstaltung wird auf das Sommersemester 2022 verschoben. Siehe Internetseite des Instituts und ILIAS

<table>
<thead>
<tr>
<th>Smoothed Particle Hydrodynamics (SPH) in der numerischen Strömungsmechanik</th>
<th>Praktikum (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2169452, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Inhalt

Organisatorisches
MSc.-Studierende der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
Doktoranden der Fakultäten Maschinenbau, Chemieingenieurwesen, Bauingenieurwesen und Physik
MSc.-Studierende werden prioritisiert.

Vorkenntnisse: Numerische Strömungsmechanik, SPH-Methode, LINUX

Die Veranstaltung ist ein Blockpraktikum. Dauer: 5 Tage (Mo-Fr) - je 8 Std.
Veranstaltungsort: Seminarraum I des Geb. 30.60 (neben der Mensa), 2. OG

Verantwortung: apl. Prof. Dr. Ron Dagan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2189400</th>
<th>Solar Thermal Energy Systems</th>
<th>2 SWS</th>
<th>Vorlesung (V) / Präsenz</th>
<th>Dagan</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-106493</th>
<th>Solar Thermal Energy Systems</th>
<th>Dagan</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-106493</td>
<td>Solar Thermal Energy Systems</td>
<td>Dagan</td>
</tr>
</tbody>
</table>

Legende: 🔐 Online, 📘 Präsenz/Online gemischt, 🎧 Präsenz, ❌ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Empfehlungen
Literatur

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

<table>
<thead>
<tr>
<th>V Solar Thermal Energy Systems</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2189400, WS 21/22, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt
The course deals with fundamental aspects of solar energy
1. Introduction to solar energy – global energy panorama
2. Solar energy resource-
 Structure of the sun, Black body radiation, solar constant, solar spectral distribution
 Sun-Earth geometrical relationship
3. Passive and active solar thermal applications.
4. Solar thermal systems- solar collector-types, concentrating collectors, solar towers,
 Heat losses, efficiency
5. Selected topics on thermodynamics and heat transfer which are relevant for solar systems.
6. Introduction to Solar induced systems: Wind , Heat pumps, Biomass , Photovoltaic
7. Energy storage
The course deals with fundamental aspects of solar energy. Starting from a global energy panorama the course deals with the sun as a thermal energy source. In this context, basic issues such as the sun's structure, blackbody radiation and solar–earth geometrical relationship are discussed. In the next part, the lectures cover passive and active thermal applications and review various solar collector types including concentrating collectors and solar towers and the concept of solar tracking. Further, the collector design parameters determination is elaborated, leading to improved efficiency. This topic is augmented by a review of the main laws of thermodynamics and relevant heat transfer mechanisms.
The course ends with an overview on energy storage concepts which enhance practically the benefits of solar thermal energy systems.
The students get familiar with the global energy demand and the role of renewable energies learn about improved designs for using efficiently the potential of solar energy gain basic understanding of the main thermal hydraulic phenomena which support the work on future innovative applications will be able to evaluate quantitatively various aspects of the thermal solar systems.
Total 120 h, hereof 30 h contact hours and 90 h homework and self-studies
mündliche Prüfung ca. 30 min.

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
- "Fundamentals of classical Thermodynamics", G. Van Wylen & R. E. Sonntag. Published by Wiley & Sons
3.260 Teilleistung: Statik Starrer Körper [T-BGU-103377]

Verantwortung: Prof. Dr.-Ing. Peter Betsch

Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Bestandteil von: M-BGU-101745 - Statik starrer Körper
M-GEISTSOZ-100889 - Orientierungsprüfung Bautechnik

Leistungspunkte

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>7</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>6200101</th>
<th>Statik starrer Körper</th>
<th>4 SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Franke</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200102</td>
<td>Übungen zu Statik starrer Körper</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🗣</td>
<td>Hille, Valdes y Beck</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>6200103</td>
<td>Tutorien zu Statik starrer Körper</td>
<td>SWS</td>
<td>Tutorium (Tu) / 🗣</td>
<td>Mitarbeiter/innen</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 8231103377 | Statik starrer Körper | Betsch |
| SS 2022 | 8231103377 | Statik Starrer Körper | Betsch, Seelig |

Erfolgskontrolle(n)

schriftliche Prüfung, 100 min.

Teil der Orientierungsprüfung nach § 8 Abs. 1, bis zum Ende des Prüfungszeitraums des 2. Fachsemesters abzulegen

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.261 Teilleistung: Steuerungstechnik [T-MACH-105185]

Verantwortung: Hon.-Prof. Dr. Christoph Gönnheimer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2150683</th>
<th>Steuerungstechnik</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Gönnheimer</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105185</th>
<th>Steuerungstechnik</th>
<th>Gönnheimer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105185</td>
<td>Steuerungstechnik</td>
<td>Gönnheimer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung (60 min)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung (V)

Steuerungstechnik
2150683, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Die Vorlesung Steuerungstechnik gibt einen ganzheitlichen Überblick über den Einsatz steuerungstechnischer Komponenten in der industriellen Produktion.
Der erste Teil der Vorlesung befasst sich mit den Grundlagen der Signalverarbeitung und mit Steuerungsperipherie in Form von Sensoren und Aktoren, die in Produktionsanlagen für die Detektion und Beeinflussung von Prozesszuständen benötigt werden. Der zweite Teil beschäftigt sich mit der Funktions-/Arbeitsweise elektrischer Steuerungen im Produktionsumfeld. Gegenstand der Betrachtung sind hier insbesondere die speicherprogrammierbare Steuerung, die CNC-Steuerung und die Robotersteuerung.
Die Themen im Einzelnen sind:

- Signalverarbeitung
- Steuerungsperipherie
- Speicherprogrammierbare Steuerungen
- NC-Steuerungen
- Steuerungen für Industrieroboter
- Verteilte/vernetzte Steuerungssysteme
- Feldbussysteme
- Trends im Bereich der Steuerungstechnik

Lernziele:
Die Studierenden …

- sind fähig, die in der Industrie vorkommenden elektrischen Steuerungen wie SPS, CNC und RC zu nennen und deren Funktions- und Arbeitsweise zu erläutern.
- können die Vorgehensweise zur Projektierung und Programmierung einer Speicherprogrammierbaren Steuerung des Typs Siemens Simatic S7 beschreiben und dabei verschiedene Programmiersprachen der IEC 1131 verdeutlichen.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/).
3.262 Teilleistung: Strategische Potenzialfindung zur Entwicklung innovativer Produkte [T-MACH-105696]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Andreas Siebe

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
3

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2146198</th>
<th>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Siebe</th>
</tr>
</thead>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-105696</th>
<th>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</th>
<th></th>
<th>Siebe, Albers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105696</td>
<td>Strategische Potenzialfindung zur Entwicklung innovativer Produkte</td>
<td></td>
<td>Siebe, Albers</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗓 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung in Kleingruppen (30 Minuten)

Voraussetzungen

Die Voraussetzung der Teilleistung ist die erfolgreiche Bearbeitung einer Case-Study(T-MACH-110396): Dokumentation und Präsentation der Gesamtergebnisse (15 Minuten)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-110396 - Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Strategische Potenzialfindung zur Entwicklung innovativer Produkte

2146198, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Organisatorisches

Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
3.263 Teilleistung: Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study [T-MACH-110396]

Verantwortung: Prof. Dr.-Ing. Albert Albers
Prof. Dr.-Ing. Sven Matthiesen
Prof. Dr.-Ing. Andreas Siebe

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktentwicklung

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Voraussetzung für:
T-MACH-105696 - Strategische Potenzialfindung zur Entwicklung innovativer Produkte

Lehrveranstaltungen

| SS 2022 | 2146198 | Strategische Potenzialfindung zur Entwicklung innovativer Produkte | 2 SWS | Vorlesung (V) / 🧩 Siebe |

Prüfungsveranstaltungen

| SS 2022 | 76-T-MACH-110396 | Strategische Potenzialfindung zur Entwicklung innovativer Produkte - Case Study | Siebe |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung einer Case-Study(T-MACH-110396): Dokumentation und Präsentation der Gesamtergebnisse (15 Minuten)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strategische Potenzialfindung zur Entwicklung innovativer Produkte

2146198, SS 2022, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Organisatorisches

Anmeldung erforderlich; Termine/ Ort und weitere Informationen siehe IPEK-Homepage
3.264 Teilleistung: Strömungen und Wärmeübertragung in der Energietechnik [T-MACH-105403]

Verantwortung: Prof. Dr.-Ing. Xu Cheng
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Lehrveranstaltungen

| WS 21/22 | 2189911 | Übungen zu 'Strömungen und Wärmeübertragung in der Energietechnik' | 1 SWS | Übung (Ü) / 🖥 | Cheng, Mitarbeiter |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105403 | Strömungen und Wärmeübertragung in der Energietechnik | Cheng |
| SS 2022 | 76-T-MACH-105403 | Strömungen und Wärmeübertragung in der Energietechnik | Cheng |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine
3.265 Teilleistung: Strömungslehre 1&2 [T-MACH-105207]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik
Bestandteil von: M-MACH-102565 - Strömungslehre

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form des Unterrichts</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2153512</td>
<td>Strömungslehre II</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3153511</td>
<td>Fluid Mechanics II</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2154512</td>
<td>Strömungslehre I</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3154510</td>
<td>Fluid Mechanics I</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>Form des Unterrichts</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105207</td>
<td>Strömungslehre (1+2)</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105207 engl.</td>
<td>Strömungslehre 1&2 engl.</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105207</td>
<td>Strömungslehre (1+2)</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel, Kriegseis</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105207 engl.</td>
<td>Strömungslehre 1&2 engl.</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Frohnapfel</td>
</tr>
</tbody>
</table>

Legende: ○ Online, ❉ Präsenz/Online gemischt, ● Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung 3 Stunden

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strömungslehre II

2153512, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Terme der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern, Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise
 Fluid Mechanics II
3153511, WS 21/22, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt
Die Studierenden sind in der Lage, die allgemeinen Gleichungen der Massen- und Impulserhaltung herzuleiten und Materialgesetze für Fluide einzuführen. Die Studierenden können die Bedeutung der einzelnen Term der Navier-Stokes-Gleichungen diskutieren. Sie sind in der Lage, die mathematischen Gleichungen, die das Strömungsverhalten beschreiben, zu vereinfachen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Darauf aufbauend können sie Strömungsgrößen für grundlegende Anwendungsfälle bestimmen. Dies beinhaltet die sowohl die Berechnung von statischen und dynamischen Kräften, die vom Fluid auf Festkörper wirken als auch die detaillierte Analyse zweidimensionaler viskoser Strömungen.

Tensor Notation, Fluidelemente im Kontinuum, Reynolds Transport Theorem, Massenerhaltung, Kontinuitätsgleichung, Impulserhaltung, Materialgesetz Newton’scher Fluide, Navier-Stokes Gleichungen, Drehimpuls- und Energieerhaltung, Integralform der Erhaltungsgleichungen, Kraftübertragung zwischen Fluiden und Festkörpern. Analytische Lösungen der Navier-Stokes Gleichungen

Literaturhinweise

 Fluid Mechanics I
3154510, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ)
Präsenz/Online gemischt

Inhalt
Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise
Inhalt
Einführung in die Grundlagen der Strömungslehre für Studenten des Maschinenbaus und verwandter Fachgebiete, sowie für Physiker und Mathematiker. Der Stoff der Vorlesung wird durch begleitende Übungen vertieft.

- Einführung
- Strömungen in Natur und Technik
- Grundlagen der Strömungsmechanik
- Eigenschaften strömender Medien und charakteristische Strömungsbereiche
- Grundgleichungen der Strömungsmechanik (Erhaltung von Masse, Impuls und Energie)
 - Kontinuitätsgleichung
 - Navier-Stokes Gleichung (Euler Gleichungen)
 - Energiegleichung
- Hydro- und Aerostatik
- verlustfreie Strömungen (Bernoulli)
- Berechnung von technischen Strömungen mit Verlusten
- Einführung in die Ähnlichkeitstheorie
- zweidimensionale viskose Strömungen
- Integralform der Grundgleichungen
- Einführung in die Gasdynamik

Literaturhinweise
3.266 Teilleistung: Strukturberechnung von Faserverbundlaminaten [T-MACH-105970]

Verantwortung: Dr.-Ing. Luise Kärger
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Fahrzeugsystemtechnik/Bereich Leichtbautechnologie
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2113106 | Strukturberechnung von Faserverbundlaminaten | 2 SWS | Vorlesung / Übung (VÜ) / 🗣 | Kärger |

Prüfungsveranstaltungen

WS 21/22	76-T-MACH 105970	Strukturberechnung von Faserverbundlaminaten	Kärger
WS 21/22	76-T-MACH 105970-W	Strukturberechnung von Faserverbundlaminaten (nur für Wiederholer)	Kärger
SS 2022	76-T-MACH-105970	Strukturberechnung von Faserverbundlaminaten	Kärger

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, 20 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Strukturberechnung von Faserverbundlaminaten
2113106, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz

Inhalt

Zur Reduktion von Kraftstoffverbrauch und CO2-Ausstoß kommen im Fahrzeugbau zunehmend Leichtbauwerkstoffe wie FaserVerbund-Kunststoffe (FVK) zum Einsatz. Die Lehrveranstaltung widmet sich der Berechnung des Material- und Strukturverhaltens von FVK-Bauteilen mit folgenden Inhalten:

- Mikromechanik und Homogenisierung des Faser-Matrix-Verbundes
- Makromechanisches Verhalten der Einzelschicht
- Verhalten des Mehrschichtverbunds
- FE-Formulierungen
- Versagenskriterien
- Schädigungsanalyse
- Auslegung von FVK-Bauteile

Lernziele:
Literaturhinweise

3.267 Teilleistung: Studienarbeiten Straßenwesen [T-BGU-106833]

Verantwortung: Prof. Dr.-Ing. Ralf Roos
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103486 - Mobilität und Infrastruktur
Voraussetzung für: T-BGU-101791 - Mobilität und Infrastruktur

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>Vorlesungseinheit</th>
<th>Lehrpersonen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200408</td>
<td>Bemessungsgrundlagen im Straßenwesen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200409</td>
<td>Übungen zu Bemessungsgrundlagen im Straßenwesen</td>
<td>SWS</td>
<td>Übung (Ü) / 🗣</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
<th>Prüfungsveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8234106833</td>
<td>Studienarbeiten Straßenwesen</td>
<td>Roos</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8234106833</td>
<td>Studienarbeiten Straßenwesen</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🛩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

4 Studienarbeiten, schriftliche Ausarbeitungen (inkl. Planunterlagen) je ca. 5-8 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
Verantwortung: Prof. Dr.-Ing. Peter Vortisch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103486 - Mobilität und Infrastruktur
Voraussetzung für: T-BGU-101791 - Mobilität und Infrastruktur

Teilleistungsart
Studieneinheit
Leistungspunkte
0
Notenskala
best./nicht best.
Turnus
Jedes Sommersemester
Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>Ws</th>
<th>Vorlesung (V) / Präsenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200406</td>
<td>Verkehrswesen</td>
<td>2 SWS</td>
<td>Vortisch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200407</td>
<td>Übungen zu Verkehrswesen</td>
<td>SWS</td>
<td>Übung (Ü) / Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8234106832</td>
<td>Studienarbeiten Verkehrswesen</td>
<td>Vortisch</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8234106832</td>
<td>Studienarbeiten Verkehrswesen</td>
<td>Vortisch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

3 Studienarbeiten, schriftliche Ausarbeitungen je ca. 5-8 Seiten

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verkehrswesen

6200406, SS 2022, 2 SWS, [Im Studierendenportal anzeigen]

Inhalt

Lernziele:
Ein erster zusammenfassender Überblick über das Fach wird in der Veranstaltung Verkehrswesen vermittelt. Es werden die Grundlagen des Fachwissens in den Bereichen Verkehrsplanung und Verkehrstechnik geschaffen.

Inhalt:

Im ersten Teil werden einführende Kenntnisse über die Verkehrsplanung vermittelt:

- Einordnung des Verkehrswesens
- Verkehrzelleneinteilung, Verkehrsnetze, Matrixdarstellung von Verkehrsrelationen
- Verkehrsdatenbeschaffung und Verkehrserhebungen
- Verkehrsentstehung und Zielwahl der Wege
- Verkehrsmittelwahl und Umlegung der Nachfrage auf die Verkehrsnetze

Der zweite Teil befasst sich mit den Grundlagen der Verkehrstechnik:

- Grundlagen der Verkehrsflusses (mikroskopisch und makroskopisch)
- Dimensionierung und Leistungsfähigkeit von nicht-lichtsignalisierten Knotenpunkten
- Grundlagen der Lichtsignalsteuerung und lichtsignalgeregelte Knotenpunkte
- Einblicke in Technologien, wie z. B. Telematik

Koordination: Baumann, Marvin; Reiffer, Anna
Inhalt
Der gleichzeitige Besuch der Veranstaltung Verkehrswesen wird vorausgesetzt. Die in der Vorlesung Verkehrswesen vorgestellten Methoden und Verfahren werden zur Vertiefung der Kenntnisse in verschiedenen Berechnungsaufgaben angewendet. In der Veranstaltung wird das Vorgehen bei der Anwendung von Methoden und Verfahren vorgestellt. Im Laufe des Semesters sind daraufhin drei Studienarbeiten zu bearbeiten, deren Bestehen für Studierende des Bauingenieurwesens Voraussetzung für die Teilnahme an der schriftlichen Prüfung ist. Für Studierende des Wirtschaftsingenieurwesens im Modul Verkehrssysteme ist die Teilnahme an der Studienarbeit freiwillig.

Koordination: Baumann, Marvin; Reiffer, Anna
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Sustainable Product Engineering

2146192, SS 2022, 2 SWS, [Im Studierendenportal anzeigen]

Inhalt

Verständnisses der Nachhaltigkeitsziele und ihrer Bedeutung bei der Produktentwicklung, den Wechselwirkungen zwischen technischen Erzeugnissen und ihrer Umwelt, dem ganzheitlichen Ansatz und der Gleichrangigkeit von wirtschaftlichen, sozialen und ökologischen Aspekten sowie umweltbezogenen Leistungsmerkmalen

Vermittlung von Fähigkeiten zur lebenszyklusbasierten Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten

Verständnis von praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltsimulation im Entstehungsgang technischer Erzeugnisse

Förderung der Entwicklung von Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstoprganisation / Präsentation anhand realitätsnaher Projekte

Ziel der Lehrveranstaltung ist die Vermittlung von Eckpunkten einer nachhaltigen Produktentwicklung im wirtschaftlichen, sozialen und ökologischen Kontext.

Die Studierenden sind fähig ...

- Lebenszyklusbasierte Produktauslegung am Beispiel von komplexen Fahrzeugkomponenten wie Airbag-Systemen und anderen aktuellen Produkten zu erörtern.
- praxisrelevanten Produktbeanspruchungen durch Umgebungsbedingungen am Beispiel technikintensiver Komponenten; Robustheit und Lebensdauer von Produkten als Basis für eine nachhaltige Produktentwicklung; Entwicklung von Fähigkeiten zur Anwendung der Umweltimulation im Entstehungsgang technischer Erzeugnisse zu verstehen.
- Schlüsselqualifikationen wie Teamfähigkeit / Projektplanung / Selbstoprganisation / Präsentation anhand realitätsnaher Projekte zu entwickeln.
3.270 Teilleistung: Systematische Werkstoffauswahl [T-MACH-100531]

Verantwortung: Dr.-Ing. Stefan Dietrich
Prof. Dr.-Ing. Volker Schulze

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Prüfungsleistung schriftlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 4

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung (V) / (U)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2174576</td>
<td>Systematische Werkstoffauswahl</td>
<td>3 SWS</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Dietrich</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2174577</td>
<td>Übungen zu 'Systematische Werkstoffauswahl'</td>
<td>1 SWS</td>
<td>Übung (U) / Präsenz/Online gemischt</td>
<td>Dietrich, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>Dietrich</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100531</td>
<td>Systematische Werkstoffauswahl</td>
<td>Dietrich</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗺 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung mit einer Dauer von 2 h.

Voraussetzungen
keine

Empfehlungen
Einfache Grundlagen in Werkstoffkunde, Mechanik und Konstruktionslehre wie sie in der Vorlesung Werkstoffkunde I/II vermittelt werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Systematische Werkstoffauswahl
2174576, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt
Die wichtigsten Aspekte und Kriterien der Werkstoffauswahl werden behandelt und Leitlinien für eine systematische Vorgehensweise beim Auswahlprozess erarbeitet. Dabei werden u.a. folgende Themen angesprochen:

- Informationen und Einleitung
- Erforderliche Grundlagen der Werkstoffkunde
- Ausgewählte Methoden / Herangehensweisen der Werkstoffauswahl
- Beispiele für Materialindices und Werkstoffeigenschaftsschaubilder
- Zielkonflikt und Formfaktoren
- Verbundwerkstoffe und Werkstoffverbunde
- Hochtemperaturwerkstoffe
- Berücksichtigung von Fertigungseinflüssen
- Werkstoffauswahl für eine bestehende Produktionslinie
- Fehlerhafte Werkstoffauswahl und abzuleitende Konsequenzen
- Zusammenfassung und Fragerunde

Lernziele:

Voraussetzungen:
Wing SPO 2007 (B.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein
Wing (M.Sc.)
Die Veranstaltung Werkstoffkunde I [21760] muss absolviert sein

Arbeitsaufwand:
Der Arbeitsaufwand für die Vorlesung beträgt pro Semester 120 h und besteht aus Präsenz in der Vorlesung (30 h) sowie Vor- und Nachbearbeitungszeit zuhause (30 h) und Prüfungsvorbereitungszeit (60 h).

Literaturhinweise
Vorlesungsskriptum; Übungsbänder; Lehrbuch: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
Lecture notes; Problem sheets; Textbook: M.F. Ashby, A. Wanner (Hrsg.), C. Fleck (Hrsg.);
Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen
Easy-Reading-Ausgabe, 3. Aufl., Spektrum Akademischer Verlag, 2006
ISBN: 3-8274-1762-7
3.271 Teilleistung: Systemdynamik und Regelungstechnik [T-ETIT-101921]

Verantwortung: Prof. Dr.-Ing. Sören Hohmann
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102181 - Systemdynamik und Regelungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemdynamik und</td>
<td>Systemdynamik und Regelungstechnik</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
<tr>
<td>Regelungstechnik</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 SWS</td>
<td>Vorlesung (V) / 📚</td>
<td>Hohmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WS 21/22
2303155
Tutorien zu 2303155 Systemdynamik und Regelungstechnik
SWS
Tutorium (Tu) / 📚
Schneider

WS 21/22
2303157
Übungen zu 2303155 Systemdynamik und Regelungstechnik
1 SWS
Übung (Ü) / 📚
Schneider

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>WS 21/22</th>
<th>SS 2022</th>
<th>Systemdynamik und Regelungstechnik</th>
<th>Hohmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>7303155</td>
<td>2303155</td>
<td>2303156</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🤸‍♂️ Präsenz/Online gemischt, 🗣 Präsenz, ☑ Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen
keine

Anmerkungen
wird ab dem Wintersemester 2020/2021 im Wintersemester statt im Sommersemester angeboten, die Lehrveranstaltung wird im Sommersemester 2020 nicht angeboten
3.272 Teilleistung: Systemintegration in der Mikro- und Nanotechnik [T-MACH-105555]

Verantwortung: Dr. Ulrich Gengenbach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Notenskala: Drittelnoten
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen
SS 2022 2106033 Systemintegration in der Mikro- und Nanotechnik I 2 SWS Vorlesung (V) /🗣 Gengenbach

Prüfungsveranstaltungen
WS 21/22 76-T-MACH-105555 Systemintegration in der Mikro- und Nanotechnik Hagenmeyer
SS 2022 76-T-MACH-105555 Systemintegration in der Mikro- und Nanotechnik Gengenbach

Erfolgskontrolle(n)
Mündliche Prüfung (Dauer: 30 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemintegration in der Mikro- und Nanotechnik I
2106033, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz

Inhalt

Lerninhalt:

- Einführung in die Systemintegration (Grundlagen)
- Kurzeinführung MEMS-Prozesse
- Festkörpergelenke
- Oberflächen und Plasmaverfahren für die Oberflächenbehandlung
- Technisches Kleben
- Aufbau- und Verbindungstechnik in der Elektronik
- Molded Interconnect devices (MID)
- Funktionelles Drucken
- Low temperature cofired ceramics in der Systemintegration
- 3D-Integration in der Halbleitertechnik

Lernziele:

Die Studierenden eignen sich grundlegende Kenntnisse der Herausforderungen von Systemintegrationstechnologien aus Maschinenbau, Feinwerktechnik und Elektronik an.

Literaturhinweise

- J. Franke, Räumliche elektronische Baugruppen (3D-MID), Carl Hanser-Verlag München, 2013
3.273 Teilleistung: Systemintegration in der Mikro- und Nanotechnik 2 [T-MACH-110272]

Verantwortung: Dr. Ulrich Gengenbach
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Automation und angewandte Informatik

Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2105040 | Systemintegration in der Mikro- und Nanotechnik 2 | 2 SWS | Vorlesung (V) / 🗣 | Gengenbach |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-110272 | Systemintegration in der Mikro- und Nanotechnik 2 | Gengenbach |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 15 Min.

Voraussetzungen

Keine

Anmerkungen

Achtung: Die Vorlesung sowie Prüfung wird erstmalig im WS20/21 angeboten!

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Systemintegration in der Mikro- und Nanotechnik 2

2105040, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Einführung in die Systemintegration (neue Verfahren und Anwendungen)
Montage hybrider Mikrosysteme
Packaging Verfahren
Anwendungen:
- Mikroverfahrenstechnik
- Lab-on-Chip-Systeme
- Mikrooptische Systeme
- Silicon Photonics

Neue Integrationsverfahren:
- Direct Laser Writing
- Self Assembly

Lernziele

Die Studierenden eignen sich Kenntnisse neuer System-integrationstechnologien und ihrer Anwendung in mikrooptischen und mikrofluidischen Systemen an.

Literaturhinweise

N.-T. Nguyen, Fundamentals and Applications of Microfluidics, Artech House
G. T. Reed, Silicon Photonics: An Introduction, Wiley
3.274 Teilleistung: Systems and Software Engineering [T-ETIT-100675]

Verantwortung: Prof. Dr.-Ing. Eric Sax
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-100537 - Systems and Software Engineering

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung Code</th>
<th>Vorlesung</th>
<th>SWS</th>
<th>Übung</th>
<th>Übung Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2311605</td>
<td>Systems and Software Engineering</td>
<td>2</td>
<td></td>
<td>Sax</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2311607</td>
<td>Übungen zu 2311605 Systems and Software Engineering</td>
<td>1</td>
<td></td>
<td>Nägele</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung Code</th>
<th>Vorlesung</th>
<th>Sax</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7311605</td>
<td>Systems and Software Engineering</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>7311605</td>
<td>Systems and Software Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Schriftlich Prüfung, ca. 120 Minuten. (nach §4 (2), 1 SPO).

Voraussetzungen
keine

Empfehlungen
Kenntnisse in Digitaltechnik und Informationstechnik
3.275 Teilleistung: Technische Akustik [T-MACH-111382]

Verantwortung: Dr. Iris Pantle
Johannes Walter

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 4

Notenskala
- Drittelnoten

Turnus
- Jedes Semester

Version
- 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022 2158107 Technische Akustik 2 SWS Vorlesung (V) / 🗣 Walter, Pantle</td>
<td>WS 21/22 76-T-MACH-111382 Technische Akustik Pantle, Walter</td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-111382 Technische Akustik Pantle, Walter</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
- mündliche Prüfung, 30 Min.

Voraussetzungen
- Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Akustik
- 2158107, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
- Präsenz
Inhalt
Lehrinhalt:
Grundlagen der Akustik
Wahrnehmung und Bewertung von Schall (Menschliches Hörmöggen)
Darstellung akustischer Größen, Pegelschreibweise
Schallausbreitung in verschiedenen Medien
Schallmesstechniken, messtechnische Komponenten
Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 60 Stunden
Prüfungsvorbereitung: 30 Stunden
Nachweis:
mündlich
Dauer: 30 Minuten
keine Hilfsmittel erlaubt
Zielgruppe: Die Vorlesung richtet sich an Interessenten aus dem technisch-naturwissenschaftlichen Bereich sowie aus der Architektur.
HINWEIS für ETIT-Student/inn/en: diese Veranstaltung können Sie nicht anerkennen lassen, weil an der Fakultät für Elektrotechnik und Informationstechnik auch eine Veranstaltung "Technische Akustik" angeboten wird.
Zugangsvoraussetzungen: Grundkenntnisse aus Mathematik und Physik
Lernziele:
Die Studierenden erwerben Fähigkeiten die Grundlagen der Technischen Akustik zu benennen und auf Problemstellungen in verschiedenen Bereichen des Ingenieurwesens, insbesondere des Maschinenbaus anzuwenden.
Organisatorisches

Literaturhinweise
1. Vorlesungs­skript (von Homepage des Instituts herunterladbar).
3.276 Teilleistung: Technische Grundlagen des Verbrennungsmotors [T-MACH-105652]

Verantwortung: Dr.-Ing. Sören Bernhardt
Dr.-Ing. Heiko Kubach
Jürgen Pfeil
Dr.-Ing. Olaf Toedter
Dr.-Ing. Uwe Wagner

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102623 - Schwerpunkt: Grundlagen der Energiotechnik
M-MACH-102746 - Wahlpflichtmodul
M-MACH-102816 - Schwerpunkt: Grundlagen der Energiotechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Vorlesung (V) / 🗣</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2133123</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>2</td>
<td>Kubach, Wagner, Toedter, Pfeil, Bernhardt, Velji</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Lehrveranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors</td>
<td>Kubach</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105652</td>
<td>Technische Grundlagen des Verbrennungsmotors (alle Module außer SP57)</td>
<td>Kubach</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105652(SP)</td>
<td>Technische Grundlagen des Verbrennungsmotors (Prüfung im SP57)</td>
<td>Kubach</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⌚ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Grundlagen des Verbrennungsmotors

Vorlesung (V)

2133123, WS 21/22, 2 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt

- Grundlagen der Motorprozesse
- Bauteile von Verbrennungsmotoren
- Gemischbildungssysteme
- Ladungswechselsysteme
- Einspritzsysteme
- Abgasnachbehandlungssysteme
- Kühlsysteme
- Zündsysteme
3.277 Teilleistung: Technische Informationssysteme [T-MACH-102083]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von:
M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102746 - Wahlpflichtmodul

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>semester</th>
<th>Vorlesung / Übung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Lehrstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2121001</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>semester</th>
<th>Vorlesung / Übung</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
<th>Lehrstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102083</td>
<td>Technische Informationssysteme</td>
<td>3 SWS</td>
<td>Vorlesung / Übung (VÜ)</td>
<td>Ovtcharova, Elstermann</td>
</tr>
</tbody>
</table>

Legende:
🖥 Online,🧩 Präsenz/Online gemischt,🗣 Präsenz,🗙 Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung 20 Min.

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Informationssysteme

2121001, WS 21/22, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung / Übung (VÜ)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Semester</th>
<th>Vorlesung / Übung</th>
<th>Lehrstelle</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Informationssysteme</td>
<td>2121001</td>
<td>WS 21/22</td>
<td>Ovtcharova, Elstermann</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>

Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise

Vorlesungsfolien / lecture slides

Technische Informationssysteme

2121001, SS 2022, 3 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Vorlesung / Übung (VÜ)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Semester</th>
<th>Vorlesung / Übung</th>
<th>Lehrstelle</th>
<th>SWS</th>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Informationssysteme</td>
<td>2121001</td>
<td>SS 2022</td>
<td>Ovtcharova, Elstermann</td>
<td>3</td>
<td>Vorlesung / Übung (VÜ)</td>
</tr>
</tbody>
</table>
Inhalt

- Informationssysteme und Informationsmanagement
- Datenbanken
- Wissensmanagement und Ontologie
- Prozess Modellierung
- CAD-, CAP- und CAM-Systeme
- PPS-, ERP- und PDM-Systeme

Studierende können:

- den Aufbau und die Funktionsweise von Informationssystemen erläutern
- die Struktur von relationalen Datenbanken beschreiben
- die Grundlagen des Wissensmanagements und deren Einsatz im Ingenieurwesen beschreiben und Ontologie als Wissensrepräsentation anwenden
- unterschiedliche Prozessmodellierungsarten und deren Verwendung beschreiben und mit ausgewählten Werkzeugen exemplarisch einfache Workflows und Prozesse abbilden und zur Ausführung bringen
- die unterschiedlichen Ziele spezifischer IT-Systemen in der Produktentstehung (CAD, CAP, CAM, PPS, ERP, PDM) verdeutlichen und dem Produktentstehungsprozess zuordnen

Literaturhinweise
Vorlesungsfolien / lecture slides
Lehrveranstaltungen

| WS 21/22 | 2161245 | Technische Mechanik I | 3 SWS | Vorlesung (V) | Böhlke |
| WS 21/22 | 3161010 | Engineering Mechanics I (Lecture) | 3 SWS | Vorlesung (V) | Langhoff, Pallicity, Böhlke |

Prüfungsveranstaltungen

WS 21/22	76-T-MACH-100282	Technische Mechanik I	Böhlke, Langhoff
WS 21/22	76-T-MACH-100282-englisch	Engineering Mechanics I	Böhlke, Langhoff
SS 2022	76-T-MACH-100282	Technische Mechanik I	Böhlke, Langhoff
SS 2022	76-T-MACH-100282-englisch	Engineering Mechanics I	Langhoff, Böhlke

Notenskala:
- **Turnus:** Jedes Wintersemester
- **Version:** 2

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- ☒ Abgesagt

Erfolgskontrolle(n)

- schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen

Bestehen der "Übungen zur Technischen Mechanik I" (siehe Teilleistung T-MACH-100528)

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100528 - Übungen zu Technische Mechanik I muss erfolgreich abgeschlossen worden sein.

Inhalt

- Grundzüge der Vektorrechnung
- Kraftsysteme
- Statik starrer Körper
- Schnittgrößen in Stäben u. Balken
- Haftung und Gleitreibung
- Schwerpunkt u. Massenmittelpunkt
- Arbeit, Energie, Prinzip der virtuellen Verschiebungen
- Statik der undehnbaren Seile
- Elastostatik der Zug-Druck-Stäbe

Literaturhinweise

- Vorlesungsskript
- Hibbeler, R.C: Technische Mechanik 1 - Statik. Prentice Hall. Pearson Studium 2005
3.279 Teilleistung: Technische Mechanik II [T-MACH-100283]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
6

Notenskala
Drittelnoten

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2022 2162250 Technische Mechanik II 3 SWS Vorlesung (V) / Präsenz/Online gemischt Böhlke, Langhoff
SS 2022 3162010 Engineering Mechanics II (Lecture) 3 SWS Vorlesung (V) / Präsenz Langhoff

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-100283 Technische Mechanik II 3 SWS Vorlesung (V) Böhlke, Langhoff
WS 21/22 76-T-MACH-100283-englisch Engineering Mechanics II 3 SWS Vorlesung (V) Böhlke, Langhoff
SS 2022 76-T-MACH-100283 Technische Mechanik II 3 SWS Vorlesung (V) Böhlke, Langhoff
SS 2022 76-T-MACH-100283-englisch Engineering Mechanics II 3 SWS Vorlesung (V) Böhlke, Langhoff

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
schriftliche Prüfung (Klausur), 90 min, benotet

Voraussetzungen
Bestehen der "Übungen zur Technischen Mechanik II" (siehe Teilleistung T-MACH-100284)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-100284 - Übungen zu Technische Mechanik II muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Technische Mechanik II
2162250, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt

Inhalt
• Balkenbiegung
• Querkraftschub
• Torsionstheorie
• Spannungs- und Verzerrungszustand in 3D
• Hooke'sches Gesetz in 3D
• Elastizitätstheorie in 3D
• Energiemethoden der Elastostatik
• Näherungsverfahren
• Stabilität elastischer Stäbe

Literaturhinweise
Vorlesungsskript

V Engineering Mechanics II (Lecture)
3162010, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen
Vorlesung (V)
Präsenz/Online gemischt
Inhalt

- bending
- shear
- torsion
- stress and strain state in 3D
- Hooke's law in 3D
- elasticity theorems in 3D
- energy methods in elastostatics
- approximation methods
- stability of elastic bars
3.280 Teilleistung: Technische Schwingungslehre [T-MACH-105290]

Verantwortung: Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistung: Technische Schwingungslehre (T-MACH-105290)

Verantwortung:
Prof. Dr.-Ing. Alexander Fidlin
Prof. Dr.-Ing. Wolfgang Seemann

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von:
M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2161212</th>
<th>Technische Schwingungslehre</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Fidlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2161213</td>
<td>Übungen zu Technische Schwingungslehre</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Fidlin, Keller</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105290 | Technische Schwingungslehre | Fidlin |
| SS 2022 | 76-T-MACH-105290 | Technische Schwingungslehre | Fidlin |

Erfolgskontrolle(n)

schriftliche Prüfung, 180 min.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Schwingungslehre

2161212, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Grundbegriffe bei Schwingungen, Überlagerung von Schwingungen, komplexe Frequenzgangrechnung.

Einführung in die Rotordynamik: Lavalrotor in starren und elastischen Lagern, Berücksichtigung innerer Dämpfung, Lavalrotor in anisotroper Lagerung, Gleich- und Gegenlauf, Rotoren mit unrunder Welle.

Literaturhinweise

Klotter: Technische Schwingungslehre, Bd. 1 Teil A, Heidelberg, 1978

Hagedorn, Otterbein: Technische Schwingungslehre, Bd. 1 und Bd. 2, Berlin, 1987

Übungen zu Technische Schwingungslehre

2161213, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Übung des Vorlesungsstoffs
3.281 Teilleistung: Technische Thermodynamik und Wärmeübertragung I [T-MACH-104747]

Verantwortung: Prof. Dr. Ulrich Maas
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik
Bestandteil von: M-MACH-102386 - Technische Thermodynamik und Wärmeübertragung I

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 8
Notenskala: Drittelnoten
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Prüfungseinheit</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (V) / 🧩</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>2165501</td>
<td>Vorlesung (V) / 🧩</td>
<td>Maas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>3165014</td>
<td>Vorlesung (V) / 🧩</td>
<td>Schießl, Maas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Prüfungseinheit</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Prüfung (V) / 🧩</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>76-T-MACH-104747</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>76-T-MACH-104747-english</td>
<td>Maas, Schießl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>76-T-MACH-104747-Wiederholer</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>Technische Thermodynamik und Wärmeübertragung I</td>
<td>76-T-MACH-104747</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>Technical Thermodynamics and Heat Transfer I</td>
<td>76-T-MACH-104747-englisch</td>
<td>Maas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, 🧩 Präsenz/Online gemischt, 🗑 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Prüfungsvorleistung: Übungsschein pro Semester durch Bearbeiten von Übungsblättern
Prüfungsleistung schriftlich; Dauer ca. 3h

Voraussetzungen
Erfolgreiche Teilnahme an der Übung (T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung)

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105204 - Technische Thermodynamik und Wärmeübertragung I, Vorleistung muss erfolgreich abgeschlossen worden sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technische Thermodynamik und Wärmeübertragung I
2165501, WS 21/22, 4 SWS, Sprache: Deutsch, [im Studierendenportal anzeigen]

Inhalt

- System, Zustandsgrößen
- Absolute Temperatur, Modellsysteme
- Hauptsatz für ruhende und bewegte Systeme
- Entropie und 2. Hauptsatz
- Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
- Maschinenprozesse
- Mischungen von idealen und realen Stoffen
Organisatorisches
Die Vorlesung findet bis Ende November online statt.

Literaturhinweise
Vorlesungsskriptum

Inhalt
• System, Zustandsgrößen
• Absolute Temperatur, Modellsysteme
• Hauptsatz für ruhende und bewegte Systeme
• Entropie und 2. Hauptsatz
• Verhalten realer Stoffe beschrieben durch Tabellen, Diagramme und Zustandsgleichungen
• Maschinenprozesse
• Mischungen von idealen und realen Stoffen

Literaturhinweise
Vorlesungsskriptum
3.282 Teilleistung: Technische Thermodynamik und Wärmeübertragung I, Vorleistung [T-MACH-105204]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Ulrich Maas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Maschinenbau</td>
</tr>
<tr>
<td></td>
<td>KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-MACH-102386 - Technische Thermodynamik und Wärmeübertragung I</td>
</tr>
<tr>
<td>Voraussetzung für:</td>
<td>T-MACH-104747 - Technische Thermodynamik und Wärmeübertragung I</td>
</tr>
</tbody>
</table>

Teilleistungsart
- Studienleistung schriftlich

Leistungspunkte
- 0

Notenskala
- best./nicht best.

Turnus
- Jedes Wintersemester

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>SWS</th>
<th>Form</th>
<th>Tutor</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2165502</td>
<td>Übungen zu Technische Thermodynamik und Wärmeübertragung I</td>
<td>2</td>
<td>Übung</td>
<td>Maas</td>
<td></td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3165015</td>
<td>Technical Thermodynamics and Heat Transfer I (Tutorial)</td>
<td>2</td>
<td>Tutorium</td>
<td>Schießl, Maas</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursname</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 2022</td>
<td>76-T-MACH-105204</td>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105204</td>
<td>Technische Thermodynamik und Wärmeübertragung I, Vorleistung</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
- Erfolgreiche Bearbeitung der Übungsblätter.

Voraussetzungen
- keine
3.283 Teilleistung: Technisches Darstellen [T-BGU-103402]

Verantwortung: Prof. Dr.-Ing. Ralf Roos
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101761 - Technisches Darstellen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200116</td>
<td>Technisches Darstellen</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231103402</td>
<td>Technisches Darstellen</td>
<td>Roos</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8231103402</td>
<td>Technisches Darstellen</td>
<td>Roos</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🎫 Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

- 3 Hausübungen, 1 Gruppenübung mit Präsentation (10 min.)

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.284 Teilleistung: Technologie der Stahlbauteile [T-MACH-105362]

Verantwortung: Prof. Dr.-Ing. Volker Schulze
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2022</th>
<th>2174579</th>
<th>Technologie der Stahlbauteile</th>
<th>2 SWS</th>
<th>Vorlesung (V) / 🧩</th>
<th>Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105362</td>
<td>Technologie der Stahlbauteile</td>
<td>Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 minutes

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Technologie der Stahlbauteile
2174579, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Bedeutung, Entstehung und Charakterisierung von Bauteilzuständen
Beschreibung der Auswirkungen von Bauteilzuständen
Stabilität von Bauteilzuständen
Stahlgruppen
Bauteilzustände nach Umformprozessen
Bauteilzustände nach durchgreifenden Wärmebehandlungen
Bauteilzustände nach Randschichthärtungen
Bauteilzustände nach Zerspanprozessen
Bauteilzustände nach Oberflächenbehandlungen
Bauteilzustände nach Fügeprozessen
Zusammenfassende Bewertung

Lernziele:

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Literaturhinweise
Skript wird in der Vorlesung ausgegeben

VDEh: Werkstoffkunde Stahl, Bd. 1: Grundlagen, Springer-Verlag, 1984

V. Schulze: Modern Mechanical Surface Treatments, Wiley, Weinheim, 2005
3.285 Teilleistung: Technologie und Management im Baubetrieb [T-BGU-103392]

Verantwortung: Prof. Dr.-Ing. Shervin Haghsheno
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101754 - Technologie und Management im Baubetrieb

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>11</td>
<td>Drittelnoten</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Veranstaltungsname</th>
<th>Lehrkraft</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6200410</td>
<td>Vorlesung (V)</td>
<td>3</td>
<td>Baubetriebstechnik</td>
<td>Gentes, Haghsheno, Schneider</td>
<td>Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200411</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Übungen zu Baubetriebstechnik</td>
<td>Gentes, Haghsheno, Schneider, Waleczko</td>
<td>Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200412</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Baubetriebswirtschaft</td>
<td>Lennerts, Schmidt-Bäumler</td>
<td>Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200413</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Übungen zu Baubetriebswirtschaft</td>
<td>Lennerts, Schmidt-Bäumler</td>
<td>Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6200414</td>
<td>Vorlesung (V)</td>
<td>1</td>
<td>Facility- und Immobilienmanagement</td>
<td>Lennerts, Schmidt-Bäumler</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Prüfungstitel</th>
<th>Lehrkraft</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8234103392</td>
<td>Technologie und Management im Baubetrieb</td>
<td>Haghsheno, Schneider, Schmidt-Bäumler</td>
<td>Präsenz</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8234103392</td>
<td>Technologie und Management im Baubetrieb</td>
<td>Haghsheno, Schneider, Schmidt-Bäumler</td>
<td>Präsenz</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Schriftliche Prüfung, 150 min.

Voraussetzungen
keine

Empfehlungen
keine

Anmerkungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Baubetriebswirtschaft
6200413, SS 2022, 1 SWS, Im Studierendenportal anzeigen

Inhalt
(Übungstermine werden in der Vorlesung bekanntgegeben)
3.286 Teilleistung: Thermische Solarenergie [T-MACH-105225]

Verantwortung: Prof. Dr. Robert Stieglitz

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Thermofluidik

Bestandteil von:
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsmündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2169472</td>
<td>Thermische Solarenergie</td>
<td>2</td>
<td>Vorlesung (V) / 🗣️</td>
<td>Stieglitz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Veranstaltung</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>Stieglitz</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105225</td>
<td>Thermische Solarenergie</td>
<td>Stieglitz</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🕰️ Präsenz/Online gemischt, 🗣️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, ca. 30 Minuten

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Solarenergie

2169472, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
</tr>
</tbody>
</table>
Inhalt
Grundlagen der thermischen Solarenergie (Strahlung, Leitung, Speicherung, Wirkungsgrad). Aktive und passive Nutzung der Solarenergie, Solarkollektoren (Bauformen, Wirkungsgrad, Systemtechnik), Solarkraftwerke (Heliostate, Parabolrinnen, Aufwindtypen), Solare Klimatisierung.

Im Detail:
5. Impuls- und Wärmetransport: Grundgleichungen des ein- u. mehrphasigen Transports, Berechnungsverfahren, Stabilitätsgrenzen.

Optional

Am Ende
Speicher: Energieinhalte, Speichertypen, Speichermaterialien, Koste
Solare Klimatisierung: Kühleistungsbestimmung, Raumklima, solare Kühlverfahren und Bewertung der Klimatisierung.

Empfehlung/Vorkenntnisse:
Grundlagen der Wärme-Stoffübertragung, der Werkstoffkunde und Strömungsmechanik, wünschenswert sind sichere Grundkenntnisse der Physik in Optik sowie Thermodynamik
Mündliche Prüfung, Dauer: ca. 25 Minuten, Hilfsmittel: keine

Organisatorisches
Die Veranstaltung wird nur online gehalten, falls durch Corona Einschränkungen vorgegeben werden.

Literaturhinweise
Bereitstellung des Sudienmaterials in gedruckter und elektronischer Form.
Stieglitz & Heinzle; Thermische Solarenergie -Grundlagen-Technologie- Anwendungen. Springer Vieweg Verlag, 711 Seiten. ISBN 978-3-642-29474-7
3.287 Teilleistung: Thermische Turbomaschinen I [T-MACH-105363]

Verantwortung: Prof. Dr.-Ing. Hans-Jörg Bauer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen
Bestandteil von: M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

WS 21/22	2169453	Thermische Turbomaschinen I (auf Deutsch)	3 SWS	Vorlesung (V) / 🗣	Bauer
WS 21/22	2169454	Übungen zu Thermische Turbomaschinen I	2 SWS	Übung (Ü) / 🗣	Bauer
WS 21/22	2169553	Thermische Turbomaschinen I (auf Englisch)	3 SWS	Vorlesung (V) / 🗣	Bauer

Prüfungsveranstaltungen

WS 21/22	76-T-MACH-105363	Thermische Turbomaschinen I	Bauer
WS 21/22	76-T-MACH-105363-Wdh	Thermische Turbomaschinen I (für Wiederholer)	Bauer
SS 2022	76-T-MACH-105363	Thermische Turbomaschinen I	Bauer
SS 2022	76T-Mach-105363-Wdh	Thermische Turbomaschinen I (für Wiederholer)	Bauer

Legende: 🗣 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer: 30 Min.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Thermische Turbomaschinen I (auf Deutsch)
2169453, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz
Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energieübergang in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.
Prüfung:
mündlich
Dauer: 30 min

Hilfsmittel: keine

Organisatorisches
Vorlesung findet in Präsenz statt, sofern es die COVID-Inzidenzwerte zulassen.

Literaturhinweise
Vorlesungsdruck (erhältlich im Internet)

Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993

Inhalt
Allgemeine Grundlagen der Thermischen Strömungsmaschinen
Dampfturbinen Systemanalyse
Gasturbinen Systemanalyse
Kombikraftwerke und Heizkraftanlagen
Wirkungsweise der Turbo-maschinen: Allgemeiner Überblick
Arbeitsverfahren von Turbinen: Energieübertrag in der Stufe
Bauarten und Ausführungsbeispiele von Turbinen
Ebene gerade Schaufelgitter
Räumliche Strömung in der Turbine und radiales Gleichgewicht
Verdichterstufen und Ausblick

Empfehlungen:
In Kombination mit der Vorlesung 'Thermische Turbomaschinen II' empfohlen.

Lernziele:
Die Studenten sind in der Lage, den Aufbau und die Funktionsweise von Thermischen Turbomaschinen im Detail zu erläutern und die Einsatzgebiete dieser Maschinen zu beurteilen. Sie können die Aufgaben der einzelnen Komponenten und Baugruppen beschreiben und analysieren. Die Studenten besitzen die Fähigkeit den Einfluss physikalischer, ökonomischer und ökologischer Randbedingungen zu beurteilen und zu bewerten.

Arbeitsaufwand:
Präsenzzeit: 31,50 h
Selbststudium: 64,40 h
Prüfung:
müdlich
Dauer: 30 min
Hilfsmittel: keine

Organisatorisches
Veranstaltung wird in Präsenz angeboten, sofern es die COVID-Inzidenzwerte zulassen

Literaturhinweise
Vorlesungsskript (erhältlich im Internet)
Sigloch, H.: Strömungsmaschinen, Carl Hanser Verlag, 1993
3.288 Teilleistung: Trainingswissenschaft [T-GEISTSOZ-103285]

Verantwortung: Dr. Gunther Kurz
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-103280 - Bewegung und Training - IngPäd

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>WS 21/22</th>
<th>SS 2022</th>
<th>Vorlesung (V)</th>
<th>Kurz, Steingrebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>5016106</td>
<td>Grundlagen Trainingswissenschaft</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Kurz, Steingrebe</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsveranstaltung</th>
<th>SS 2022</th>
<th>Prüfung (K)</th>
<th>Kurz, Stein</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400251</td>
<td>Trainingswissenschaft</td>
<td>Vorlesung (K)</td>
<td>Kurz, Stein</td>
<td></td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfungsleistung im Umfang von 60 Minuten über die Lehrinhalte des gesamten Moduls nach § 4 Abs. 2 Nr. 1 SPO B.Sc. Sportwissenschaft 2015

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Grundlagen Trainingswissenschaft

| Vorlesung (V) |
| Vorlesung (V) |

5016106, WS 21/22, 2 SWS, Im Studierendenportal anzeigen
Inhalt

Die Vorlesung vermittelt einen Überblick über die sportwissenschaftliche Disziplin der Trainingswissenschaft und damit die zentralen Fragestellungen, Begrifflichkeiten, Theorien und Methoden sowie Anwendungsfelder der Trainingswissenschaft. Konkret lernen die Studierenden zunächst die Trainingswissenschaft als wissenschaftliche Teildisziplin der Sportwissenschaft kennen, dies betrifft u.a. die Definition des Trainingsbegriffs sowie die Charakterisierung des Selbstverständnisses, des Gegenstands bereiches und der Forschungsstrategien der Trainingswissenschaft.

Darauf aufbauend widmet sich das Modul der sportlichen Leistungsfähigkeit, d.h. den verschiedenen Leistungskomponenten (z.B. Kraft, Ausdauer usw.), die durch Training angesteuert werden können sowie deren Diagnose. Schließlich werden Modellvorstellungen zur sportlichen Leistung besprochen, die Rückschlüsse über die Relevanz einzelner Leistungskomponenten und auch deren Wechselwirkung zulassen.

Schließlich thematisiert das Modul verschiedene Aspekte des sportlichen Trainings. Dies betrifft zunächst Modelle des Trainings, die grundlegende Mechanismen der Leistungsveränderung abbilden (z.B. Adaptation und Informationsverarbeitung) aber auch Modelle der Trainingssteuerung. Schließlich werden die Themenkomplexe der Trainingsplanung sowie der Trainingskontrolle und -auswertung besprochen.

Arbeitsaufwand:
1. Präsenzzeit in V: 30 Stunden
2. Vor und Nachbereitung der V: 30 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 30 Stunden

Lernziele:

Die Studierenden
- können die Trainingswissenschaft als sportwissenschaftliche Teildisziplin und die wichtigsten Fachbegriffe definieren.
- können das Selbstverständnis, den Gegenstandsbereich und die Forschungsstrategien der Trainingswissenschaft skizzieren.
- können die verschiedenen Aspekte der sportlichen Leistungsfähigkeit (Leistungsstrukturmodelle, Leistungskomponenten und Leistungsdagnostik) beschreiben und diskutieren.
- können die verschiedenen Aspekte des sportlichen Trainings (Modelle des Trainings u. der Trainingssteuerung, Trainingsplanung und Trainingskontrolle sowie Trainingsauswertung) beschreiben und diskutieren.
Inhalt
Lerninhalt:
Die Vorlesung vermittelt einen Überblick über die sportwissenschaftliche Disziplin der Trainingswissenschaft und damit die zentralen Fragestellungen, Begrifflichkeiten, Theorien und Methoden sowie Anwendungsfelder der Trainingswissenschaft. Konkret lernen die Studierenden zunächst die Trainingswissenschaft als wissenschaftliche Teildisziplin der Sportwissenschaft kennen, dies betrifft u.a. die Definition des Trainingsbegriffs sowie die Charakterisierung des Selbstverständnisses, des Gegenstandsbereiches und der Forschungsstrategien der Trainingswissenschaft.

Darauf aufbauend widmet sich das Modul der sportlichen Leistungsfähigkeit, d.h. den verschiedenen Leistungskomponenten (z.B. Kraft, Ausdauer usw.), die durch Training angesteuert werden können sowie deren Diagnose. Schließlich werden Modellvorstellungen zur sportlichen Leistung besprochen, die Rückschlüsse über die Relevanz einzelner Leistungskomponenten und auch deren Wechselwirkung zulassen.

Schließlich thematisiert das Modul verschiedene Aspekte des sportlichen Trainings. Dies betrifft zunächst Modelle des Trainings, die grundlegende Mechanismen der Leistungsveränderung abbilden (z.B. Adaptation und Informationsverarbeitung) aber auch Modelle der Trainingssteuerung. Schließlich werden die Themenkomplexe der Trainingsplanung sowie der Trainingskontrolle und -auswertung besprochen.

Arbeitsaufwand:
Präsenzzeit in V: 30 Stunden
Vor und Nachbereitung der V: 30 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 30 Stunden

Lernziele:
Die Studierenden
- können die Trainingswissenschaft als sportwissenschaftliche Teildisziplin und die wichtigsten Fachbegriffe definieren.
- können das Selbstverständnis, den Gegenstandsbereich und die Forschungsstrategien der Trainingswissenschaft skizzieren.
- können die verschiedenen Aspekte der sportlichen Leistungsfähigkeit (Leistungsstrukturmodelle, Leistungskomponenten und Leistungsdagnostik) beschreiben und diskutieren.
- können die verschiedenen Aspekte des sportlichen Trainings (Modelle des Trainings u. der Trainingssteuerung, Trainingsplanung und Trainingskontrolle sowie Trainingsauswertung) beschreiben und diskutieren.

Literaturhinweise
3.289 Teilleistung: Ü Cardio-Fit [T-GEISTSOZ-103435]

Verantwortung: Dr. phil. Lars Schlenker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-103281 - Theorie und Praxis der Sportarten - Basiskurse für IngPäd

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017220 Cardio-Fit - A</td>
<td>1 SWS Übung (Ü)</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017221 Cardio-Fit - B</td>
<td>1 SWS Übung (Ü)</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017222 Cardio-Fit - C</td>
<td>1 SWS Übung (Ü)</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017223 Cardio-Fit - D</td>
<td>1 SWS Übung (Ü)</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017220 Cardio-Fit - A</td>
<td>1 SWS Übung (Ü) / Klos</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017221 Cardio-Fit - B</td>
<td>1 SWS Übung (Ü) / Klos</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017222 Cardio-Fit - C</td>
<td>1 SWS Übung (Ü) / Schlenker</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017223 Cardio-Fit - D</td>
<td>1 SWS Übung (Ü) / Schlenker</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7400221 Ü Cardio-Fit</td>
<td>Schlenker</td>
</tr>
</tbody>
</table>

Legende: [Online], [Präsenz/Online gemischt], [Präsenz], [Abgesagt]

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Cardio-Fit - A
5017220, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - B
5017221, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü)
Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - C
5017222, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - D
5017223, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining
Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - B
5017221, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - C
5017222, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining

Cardio-Fit - D
5017223, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Lerninhalten:
In der Veranstaltung Cardio-Fit werden u.a. trainingswissenschaftliche Grundlagen und leistungsdiagnostische Verfahren im Ausdauersport behandelt. Dabei steht die Vermittlung der theoretischen Grundlagen sowie die praktische Umsetzung der Kursinhalte im Mittelpunkt.

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische Grundkenntnisse in den Bereichen Trainingsmethodik (Ausdauer), Ausdauerdiagnostik und spielerische Gestaltung von Ausdauertraining
Teilleistung: Ü Einführung Lehrkompetenz [T-GEISTSOZ-103434]

Verantwortung: Dr. Dietmar Blicker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-103281 - Theorie und Praxis der Sportarten - Basiskurse für IngPäd
Voraussetzung für: T-GEISTSOZ-100840 - Grundfach Basketball - Praxis
T-GEISTSOZ-100841 - Grundfach Volleyball - Praxis
T-GEISTSOZ-100842 - Grundfach Basketball - Theorie
T-GEISTSOZ-100843 - Grundfach Volleyball - Theorie
T-GEISTSOZ-100844 - Grundfach Handball - Theorie
T-GEISTSOZ-100845 - Grundfach Handball - Praxis
T-GEISTSOZ-100846 - Grundfach Fußball - Theorie
T-GEISTSOZ-100847 - Grundfach Fußball - Praxis

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrtermin</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Veranstaltungsart</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017210</td>
<td>Einführung Lehrkompetenz - A</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017211</td>
<td>Einführung Lehrkompetenz - B</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017212</td>
<td>Einführung Lehrkompetenz - C</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017213</td>
<td>Einführung Lehrkompetenz - D</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017210</td>
<td>Einführung Lehrkompetenz - A</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017211</td>
<td>Einführung Lehrkompetenz - B</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017212</td>
<td>Einführung Lehrkompetenz - C</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017213</td>
<td>Einführung Lehrkompetenz - D</td>
<td>1</td>
<td>Praktische Übung (PÜ)</td>
<td>Präsenz</td>
<td>Blicker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Veranstaltungsart</th>
<th>Verantwortlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400061</td>
<td>Ü Einführung Lehrkompetenz</td>
<td>Preise</td>
<td>Blicker</td>
</tr>
</tbody>
</table>

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Einführung Lehrkompetenz - A
5017210, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt
Einführung Lehrkompetenz - B
5017211, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

Einführung Lehrkompetenz - C
5017212, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

Einführung Lehrkompetenz - D
5017213, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

Einführung Lehrkompetenz - A
5017210, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

V Einführung Lehrkompetenz - B
5017211, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Online

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

V Einführung Lehrkompetenz - C
5017212, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Online

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü: 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern

V Einführung Lehrkompetenz - D
5017213, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Praktische Übung (PÜ)
Online
Inhalt
Lerninhalte:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationsspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern
3.291 Teilleistung: Ü Funktionelles Training [T-GEISTSOZ-103436]

Verantwortung:
Dr. Valentin Futterer

Einrichtung:
KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft

Bestandteil von:
M-GEISTSOZ-103281 - Theorie und Praxis der Sportarten - Basiskurse für IngPäd

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala best./nicht best.</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Kurzbezeichnung</th>
<th>SWS</th>
<th>Übung (Ü)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5017240</td>
<td>Funktionelles Training - A</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017241</td>
<td>Funktionelles Training - B</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017242</td>
<td>Funktionelles Training - C</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5017243</td>
<td>Funktionelles Training - D</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017240</td>
<td>Funktionelles Training - A</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017241</td>
<td>Funktionelles Training - B</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Fiedler</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017242</td>
<td>Funktionelles Training - C</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Futterer</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5017243</td>
<td>Funktionelles Training - D</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Futterer</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Kurzbezeichnung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7400241</td>
<td>Ü Funktionelles Training</td>
<td>Fiedler, Futterer</td>
</tr>
</tbody>
</table>

Legende:
- 🖥 Online
- 🧩 Präsenz/Online gemischt
- 🗣 Präsenz
- 🗑 Abgesagt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Funktionelles Training - A

Kurs: 5017240, WS 21/22, 1 SWS, [Im Studierendenportal anzeigen](#)

Inhalt

Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:

Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - B

Kurs: 5017241, WS 21/22, 1 SWS, [Im Studierendenportal anzeigen](#)
3 TEILLEISTUNGEN

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - C
5017242, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - D
5017243, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - A
5017240, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - B
5017241, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - C
5017242, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.

Funktionelles Training - D
5017243, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Die Studierenden besitzen praktische und theoretische Grundkenntnisse in den Bereichen des funktionellen Trainings und des Krafttrainings und können dies in die Gestaltung und Konzeption eines Trainings umsetzen.
3.292 Teilleistung: Ü Integrative Sportspielvermittlung [T-GEISTSOZ-103437]

Verantwortung: Dr. phil. Lars Schlenker
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-103281 - Theorie und Praxis der Sportarten - Basiskurse für IngPäd
Voraussetzung für:
 T-GEISTSOZ-100840 - Grundfach Basketball - Praxis
 T-GEISTSOZ-100841 - Grundfach Volleyball - Praxis
 T-GEISTSOZ-100842 - Grundfach Basketball - Theorie
 T-GEISTSOZ-100843 - Grundfach Volleyball - Theorie
 T-GEISTSOZ-100844 - Grundfach Handball - Theorie
 T-GEISTSOZ-100845 - Grundfach Handball - Praxis
 T-GEISTSOZ-100846 - Grundfach Fußball - Theorie
 T-GEISTSOZ-100847 - Grundfach Fußball - Praxis

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>WS 21/22 5017200</th>
<th>WS 21/22 5017201</th>
<th>WS 21/22 5017202</th>
<th>WS 21/22 5017203</th>
<th>SS 2022 5017200</th>
<th>SS 2022 5017201</th>
<th>SS 2022 5017202</th>
<th>SS 2022 5017203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrative Sportspielvermittlung - A</td>
<td>2 SWS Übung (Ü) / 🗣 Kolb</td>
<td>2 SWS Übung (Ü) / 🗣 Schlenker</td>
<td>2 SWS Übung (Ü) / 🗣 Möller</td>
<td>2 SWS Übung (Ü) / 🗣 Forcher</td>
<td>2 SWS Übung (Ü) / 🗣 Schlenker, Berg</td>
<td>2 SWS Übung (Ü) / 🗣 Hartmann</td>
<td>2 SWS Übung (Ü) / 🗣 Roth, Schlenker</td>
<td>2 SWS Übung (Ü) / 🗣 Roth, Schlenker</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>WS 21/22 7400062</th>
<th>SS 2022 7400240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ü Integrative Sportspielvermittlung</td>
<td>Schlenker</td>
<td>Schlenker</td>
</tr>
</tbody>
</table>

Legende: Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Integrative Sportspielvermittlung - A
5017200, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022

Teilleistung: Ü Integrative Sportspielvermittlung [T-GEISTSOZ-103437]
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

Integrative Sportspielvermittlung - B
5017201, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

Integrative Sportspielvermittlung - C
5017202, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.
V Integrative Sportspielvermittlung - D
5017203, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und ansschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage die Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

V Integrative Sportspielvermittlung - A
5017200, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und ansschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage die Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

V Integrative Sportspielvermittlung - B
5017201, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

Integrative Sportspielvermittlung - C
5017202, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportalanzeigen

Online Übung (Ü)

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.

Integrative Sportspielvermittlung - D
5017203, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportalanzeigen

Online Übung (Ü)

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 20 Stunden
2. Vor- und Nachbereitung der Ü: 20 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 20 Stunden

Lernziele:
Die Studierenden
- können grundlegende und anschlussfähige sportartübergreifende motorische Fähigkeiten und Fertigkeiten in den technisch-taktischen Sportarten (Mannschaftsspiele)
- kennen elementare technisch-taktische Grundlagen in Spielen mit dem Ball
- verfügen über grundlegendes methodisch-didaktisches Fachwissen und sind in der Lage Lernprozesse zielgruppen- und situationspezifisch einzuleiten (Vermittlungskompetenzen)
- können Unterrichtseinheiten bzw. Sportunterricht planen, gestalten, organisieren und kritisch reflektieren
- lernen Regeln im Sport zu verstehen, diese im Spiel anzuwenden und zielgruppen- und handlungsspezifisch zu verändern.
3 TEILLEISTUNGEN

3.293 Teilleistung: Ü Kleine Spiele [T-GEISTSOZ-103442]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Andreas Roth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-GEISTSOZ-103281 - Theorie und Praxis der Sportarten - Basiskurse für IngPäd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 5017230 Kleine-Spiele - A 1 SWS Übung (Ü) Roth, Neumann</td>
</tr>
<tr>
<td>WS 21/22 5017231 Kleine-Spiele - B 1 SWS Übung (Ü) Roth, Neumann</td>
</tr>
<tr>
<td>WS 21/22 5017232 Kleine-Spiele - C 1 SWS Übung (Ü) Roth, Neumann</td>
</tr>
<tr>
<td>SS 2022 5017230 Kleine Spiele - A 1 SWS Übung (Ü) / Kron</td>
</tr>
<tr>
<td>SS 2022 5017231 Kleine Spiele - B 1 SWS Übung (Ü) / Kron</td>
</tr>
<tr>
<td>SS 2022 5017232 Kleine Spiele - C 1 SWS Übung (Ü) / Kolb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 7400005 Ü Kleine Spiele</td>
</tr>
<tr>
<td>SS 2022 7400226 Ü Kleine Spiele Schlenker</td>
</tr>
</tbody>
</table>

Legende: ONLINE, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Lehrprobe), die lehrveranstaltungsbegleitend nach § 4 Abs. 3 SPO B.Sc. Sportwissenschaft 2015 erbracht wird.

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

| V Kleine-Spiele - A 5017230, WS 21/22, 1 SWS, Im Studierendenportal anzeigen |
|--------------------------|---------------------------|
| Übung (Ü) |

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:

| V Kleine-Spiele - B 5017231, WS 21/22, 1 SWS, Im Studierendenportal anzeigen |
|--------------------------|---------------------------|
| Übung (Ü) |
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:

V Kleine-Spiele - C
5017232, WS 21/22, 1 SWS, Im Studierendenportal anzeigen

Übung (Ü)

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:

V Kleine Spiele - A
5017230, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:

V Kleine Spiele - B
5017231, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
Inhalt

Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in Ü: 10 Stunden
2. Vor- und Nachbereitung der Ü 10 Stunden
3. Vorbereitung und Präsenzzeit in der Studienleistung: 10 Stunden

Lernziele:
3.294 Teilleistung: Übung zur Vorlesung: Einführung in die Berufspädagogik [T-GEISTSOZ-100991]

Verantwortung: Martin Stöckel
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften
Bestandteil von: M-GEISTSOZ-100612 - Berufspädagogische Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Leistungspunkte</th>
<th>Notenmodus</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012102 A</td>
<td>Übung zur Einführung in die Berufspädagogik, Gruppe A (IP BSc, IPI, PädBA, eWf)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Stöckel</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012102 B</td>
<td>Übung zur Einführung in die Berufspädagogik, Gruppe B (IP BSc, IPI, PädBA, eWf)</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Stöckel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Prüfungsdetails</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400323</td>
<td>Übung zur Vorlesung: Einführung in die Berufspädagogik</td>
<td>Gidion</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
3 TEILLEISTUNGEN

3.295 Teilleistung: Übungen zu Einführung in die Finite-Elemente-Methode [T-MACH-110330]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
Voraussetzung für: T-MACH-105320 - Einführung in die Finite-Elemente-Methode

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

SS 2022 2162257 Übungen zu Einführung in die Finite-Elemente-Methode 1 SWS Übung (Ü) / 🧩 Dyck, Lauff, Langhoff, Böhlke

Prüfungsveranstaltungen

SS 2022 76-T-MACH-110330 Übungen zu Einführung in die Finite-Elemente-Methode 🧩 Böhlke, Langhoff

Legende: 🗳️ Online, 🧩 Präsenz/Online gemischt, 🗳️ Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Einführung in die Finite-Elemente-Methode" (siehe Teilleistung 76-T-MACH-105320)

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, bestehen die Klausurvoraufgaben in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben und in der erfolgreichen Bearbeitung von Hausaufgaben am Rechner.

Für Studierende der Fachrichtung Maschinenbau, die nicht den Schwerpunkt 13 gewählt haben, und für Studierende anderer Fachrichtungen bestehen die Klausurvoraufgaben in der Bearbeitung der schriftlichen Übungsaufgaben.

Anmerkungen

Aus Kapazitätsgründen kann es sein, dass nicht alle Studierenden dieser Lehrveranstaltung zu den Rechnerübungen zugelassen werden können. Studierende des Bachelor-Studiengangs Maschinenbau, die den Schwerpunkt Kontinuumsmechanik (SP-Nr 13) gewählt haben, werden in jedem Fall zu den Rechnerübungen zugelassen. Sollten darüber hinaus weitere Plätze in den Rechnerübungen zu dieser Lehrveranstaltung zur Verfügung stehen, so werden diese gemäß der BSc-Durchschnittsnote vergeben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Einführung in die Finite-Elemente-Methode
2162257, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Ubung (Ü)
Präsenz/Online gemischt

Inhalt
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"

Literaturhinweise
siehe Vorlesung "Einführung in die Finite-Elemente-Methode"
Teilleistung: Übungen zu Einführung in die Numerische Strömungsmechanik [T-MACH-111033]

Verantwortung: Prof. Dr.-Ing. Bettina Frohnapfel
Dr.-Ing. Alexander Stroh

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Strömungsmechanik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
Voraussetzung für: T-MACH-110362 - Einführung in die Numerische Strömungsmechanik

Teilleistungsart
Studienleistung
Leistungspunkte 1
Notenskala best./nicht best.
Turnus Jedes Sommersemester
Dauer 1 Sem.
Version 1

Lehrveranstaltungen
SS 2022 2154534 Übung zu Einführung in die Numerische Strömungsmechanik 2 SWS Übung (Ü) / 🟢 Stroh, Frohnapfel

Prüfungsveranstaltungen
SS 2022 76-T-MACH-111033 Übungen zu Einführung in die Numerische Strömungsmechanik Stroh

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht in der erfolgreichen Bearbeitung der Hausaufgaben am Rechner.

Voraussetzungen
keine

Anmerkungen
Das Bestehen dieser Teilleistung berechtigt zur Anmeldung für die Klausur: Einführung in die numerische Strömungsmechanik (siehe Teilleistung T-MACH-110362).

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übung zu Einführung in die Numerische Strömungsmechanik
2154534, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü) Präsenz/Online gemischt

Inhalt
- Einführung und Motivation, Grundgleichungen und Kennzahlen,
- Turbulenz und deren Modellierung (DNS, LES, RANS);
- Numerische Lösung der Navier-Stokes Gleichungen: Diskretisierung und Lösungsverfahren (FDM, FVM), Randbedingungen, Initialbedingungen, Stabilität, Fehler der Numerik und der Modellierung
- Aufbau einer numerischen Strömungssimulation: Pre- und Postprocessing, Validierung, Darstellung der Rechenergebnisse, kritische Bewertung
- Einführung in open-source Simulationstoolbox OpenFOAM: Simulationsaufbau, Netzgenerierung mit OpenFOAM-Werkzeugen, Netzgenerierung mit kommerziellen Softwarepaketen, OpenFOAM-Auswertwerkzeuge, Auswertung in python;
- Einführung in einen forschungsoorientierten Strömungslöser für turbulente Strömungen (DNS mit Incompact3d), Simulationsaufbau, statistische Auswertung und Analyse turbulenter Strömungen in MATLAB und python;
- Visualisierung von Simulationsergebnissen in ParaView, Interpretation der Simulationsergebnisse

Die Veranstaltung umfasst eine Vorlesung und ein Rechnerpraktikum. Über die Vergabe der beschränkten Plätze in den begleitenden Rechnerübungen entscheidet das Institut.
3.297 Teilleistung: Übungen zu Globale Produktion [T-MACH-110981]

Verantwortung: Prof. Dr.-Ing. Gisela Lanza
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Teilleistungsart Studienleistung
Leistungspunkte 1
Notenskala best./nicht best.
Turnus Jedes Wintersemester
Version 2

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Prüfungsveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2149611 Übungen zu Globale Produktion 1 SWS Übung (Ü) / 🧩 Lanza</td>
<td></td>
</tr>
<tr>
<td>WS 21/22 76-T-MACH-110981 Übungen zu Globale Produktion Lanza</td>
<td></td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-110981 Übungen zu Globale Produktion Lanza</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Globale Produktion
2149611, WS 21/22, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt
Inhalt

Dabei gliedert sich die Übung entsprechend der Vorlesung in drei Aspekte: Produktionsstrategie, Netzwerkgestaltung und Netzwerkmanagement.

Die Themen im Einzelnen sind:

- Produktionsstrategien für globale Produktionsnetzwerk
- von der Unternehmens- zur Produktionsstrategie
- Aufgaben der Produktionsstrategie (Produktportfoliomanagement, Kreislaufwirtschaft, Fertigungstiefenplanung, Produktionsgekoppelte Forschung und Entwicklung)
- Gestaltung globaler Produktionsnetzwerke
- Idealtypische Netzwerkstrukturen
- Planungsprozess zur Gestaltung der Netzwerkstruktur
- Anpassung der Netzwerkstruktur
- Standortwahl
- Standortgerechte Produktionsanpassung
- Management globaler Produktionsnetzwerke
- Koordination in globalen Produktionsnetzwerken
- Beschaffungsprozess

Lernziele:
Die Studierenden …

- sind in der Lage, definierte Vorgehensweisen zur Standortauswahl anzuwenden und eine Standortentscheidung mit Hilfe unterschiedlicher Methoden zu bewerten.
- sind befähigt, adäquate Gestaltungsmöglichkeiten zur standortgerechten Produktion und Produktkonstruktion fallspezifisch auszuwählen.
- können die zentralen Elemente des Planungsvorgehens beim Aufbau eines neuen Produktionsstandortes darlegen.
- sind befähigt, die Methoden zur Gestaltung und Auslegung globaler Produktionsnetzwerke auf unternehmensindividuelle Problemlösungen anzuwenden.
- sind in der Lage, die Herausforderungen und Potentiale der Unternehmensbereiche Vertrieb, Beschaffung sowie Forschung und Entwicklung auf globaler Betrachtungsebene aufzuzeigen.

Arbeitsaufwand:

- e-Learning: ~ 20 h
- Präsenzzeit: ~ 10 h
- Selbststudium: durch korrespondierende Vorlesung abgedeckt.

Organisatorisches

Start: 05.11.2021

Übungstermine alle zwei Wochen freitags 16:00 Uhr - 17:30 Uhr.

Lectures every other week on Fridays, 16:00 h - 17:30 h.
3.298 Teilleistung: Übungen zu Höhere Mathematik I [T-MATH-100525]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100280 - Höhere Mathematik I

Voraussetzung für: T-MATH-100275 - Höhere Mathematik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>0131100</td>
<td>Übungen zu 0131000</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Griesmaier</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>0131300</td>
<td>Übungen zu 0131200</td>
<td>2 SWS</td>
<td>Übung (Ü) / 📚</td>
<td>Griesmaier</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6700005</td>
<td>Übungen zu Höhere Mathematik I</td>
<td>Arens, Griesmaier, Hettlich</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingungen werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine
3.299 Teilleistung: Übungen zu Höhere Mathematik II [T-MATH-100526]

Verantwortung: PD Dr. Tilo Arens
Prof. Dr. Roland Griesmaier
PD Dr. Frank Hettlich

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-100281 - Höhere Mathematik II

Voraussetzung für: T-MATH-100276 - Höhere Mathematik II

Lehrveranstaltungen

| SS 2022 | 0180900 | Übungen zu 0180800 | 2 SWS | Übung (Ü) | Arens |
| SS 2022 | 0181100 | Übungen zu 0181000 | 2 SWS | Übung (Ü) | Arens |

Prüfungsveranstaltungen

| SS 2022 | 7700024 | Übungen zu Höhere Mathematik II | Hettlich, Arens, Griesmaier |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer Studienleistung (Übungsschein). Die genauen Bedingung werden in der Vorlesung bekannt gegeben.

Voraussetzungen

Keine
Erfolgskontrolle(n)
Erfolgreiches Bestehen der Übungen ist Voraussetzung für die Teilnahme an der Klausur "Kontinuumsmechanik der Festkörper und Fluide" (T-MACH-110377).

Für Studierende der Fachrichtung Maschinenbau, die den Schwerpunkt 13 gewählt haben, und für Studierende der Fachrichtung MATWERK bestehen die Klausurvoraussetzungen in der erfolgreichen Bearbeitung der schriftlichen Übungsaufgaben.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Kontinuumsmechanik der Festkörper und Fluide
2161253, WS 21/22, 1 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide"

Literaturhinweise
Siehe Vorlesung "Kontinuumsmechanik der Festkörper und Fluide".
Please refer to the lecture "Continuum mechanics of solids and fluids".
3.301 Teilleistung: Übungen zu Mathematische Methoden der Kontinuumsmechanik [T-MACH-110376]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102746 - Wahlpflichtmodul
Voraussetzung für: T-MACH-110375 - Mathematische Methoden der Kontinuumsmechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 21/22 | 2161255 | Übungen zu Mathematische Methoden der Kontinuumsmechanik | 2 SWS | Übung (Ü) | Jedes Wintersemester | Gajek, Sterr, Böhlke |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-110376 | Übungen zu Mathematische Methoden der Kontinuumsmechanik | Böhlke |

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Erfolgreiche Bearbeitung der Übungsblätter. Details werden in der ersten Vorlesung bekanntgegeben.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Mathematische Methoden der Kontinuumsmechanik

2161255, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Siehe "Mathematische Methoden der Kontinuumsmechanik"

Literaturhinweise

Siehe "Mathematische Methoden der Kontinuumsmechanik"
3.302 Teilleistung: Übungen zu Technische Mechanik I [T-MACH-100528]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100279 - Technische Mechanik I

Voraussetzung für: T-MACH-100282 - Technische Mechanik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>2161246</th>
<th>Übungen zu Technische Mechanik I</th>
<th>2 SWS</th>
<th>Übung (Ü) / 🧩</th>
<th>Dyck, Gajek, Böhlke</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>3161011</td>
<td>Engineering Mechanics I (Tutorial)</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🧩</td>
<td>Kehrer, Görthofer, Langhoff</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>WS 21/22</th>
<th>76-T-MACH-100528</th>
<th>Übungen zu Technische Mechanik I</th>
<th>Böhlke, Langhoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-100528-englisch</td>
<td>Tutorial Engineering Mechanics I</td>
<td>Böhlke, Langhoff</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-100528</td>
<td>Übungen zu Technische Mechanik I</td>
<td>Böhlke, Langhoff</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🔴 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflicht-Hausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als drei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik I" (siehe Teilleistung T-MACH-100282)

Voraussetzungen

Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik I

<table>
<thead>
<tr>
<th>Übung (Ü)</th>
<th>Präsent/Online gemischt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2161246, WS 21/22, 2 SWS, Sprache: Deutsch</td>
<td>Im Studierendenportalen anzeigen</td>
</tr>
</tbody>
</table>

Inhalt

Siehe Vorlesung Technische Mechanik I.

Literaturhinweise

Siehe Vorlesung Technische Mechanik I
3.303 Teilleistung: Übungen zu Technische Mechanik II [T-MACH-100284]

Verantwortung: Prof. Dr.-Ing. Thomas Böhlke
Dr.-Ing. Tom-Alexander Langhoff

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik

Bestandteil von: M-MACH-100284 - Technische Mechanik II

Voraussetzung für: T-MACH-100283 - Technische Mechanik II

Teilleistungsart
Studienleistung schriftlich

Leistungspunkte
0

Notenskala
best./nicht best.

Turnus
Jedes Sommersemester

Version
2

Lehrveranstaltungen

SS 2022 2162251 Übungen zu Technische Mechanik II 2 SWS Übung (Ü) / 🧩 Dyck, Sterr, Böhlke
SS 2022 3162011 Engineering Mechanics II (Tutorial) 2 SWS Übung (Ü) / 🧩 Kehrer, Görthofer, Langhoff

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-100284 Übungen zu Technische Mechanik II Böhlke, Langhoff
WS 21/22 76-T-MACH-100284-englisch Tutorial Engineering Mechanics II Böhlke, Langhoff
SS 2022 76-T-MACH-100284 Übungen zu Technische Mechanik II Böhlke, Langhoff
SS 2022 76-T-MACH-100284-englisch Tutorial Engineering Mechanics II Böhlke, Langhoff

Erfolgskontrolle(n)

Die Teilleistung ist erfolgreich bestanden, wenn alle schriftlichen Pflicht-Hausaufgaben als bestanden anerkannt sind und wenn in allen anderen drei Kategorien (schriftliche Hausaufgaben, Rechnerhausaufgaben und Kolloquien) insgesamt nicht mehr als zwei endgültig nicht anerkannte Testate vorliegen, davon nicht mehr als eines in jeder dieser drei Kategorien.

Das Bestehen dieser Teilleistung berechtigt zur Anmeldung zur Klausur "Technische Mechanik II" (siehe Teilleistung T-MACH-100283).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Übungen zu Technische Mechanik II
2162251, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Siehe Vorlesung Technische Mechanik II

Literaturhinweise
Siehe Vorlesung Technische Mechanik II

Engineering Mechanics II (Tutorial)
3162011, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
see lecture "Engineering Mechanics II"

Literaturhinweise
see lecture "Engineering Mechanics II"
3.304 Teilleistung: Umformtechnik [T-MACH-105177]

Verantwortung: Dr.-Ing. Thomas Herlan
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2150681 | Umformtechnik | 2 SWS | Vorlesung (V) / 🧩 Herlan |

Prüfungsveranstaltungen

WS 21/22	76-T-MACH-105177	Umformtechnik	Herlan
WS 21/22	76-T-MACH-105177-Wdh	Umformtechnik - Wiederholungsprüfung	Herlan
SS 2022	76-T-MACH-105177	Umformtechnik	Herlan
SS 2022	76-T-MACH-105177-Wdh	Umformtechnik - Wiederholungsprüfung	Herlan

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)
Mündliche Prüfung (20 min)

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Umformtechnik
2150681, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt

Die Themen im Einzelnen sind:

- Einführung und Grundlagen
- Warmumformung
- Umformmaschinen
- Werkzeuge
- Metallkunde
- Plastizitätstheorie
- Tribologie
- Blechumformung
- Fließpressen
- Numerische Simulation

Lernziele:
Die Studierenden …

- können die Grundlagen, Verfahren, Werkzeuge, Maschinen und Einrichtungen der Umformtechnik in einer ganzheitlichen und systematischen Darstellung wiedergeben.
- können die Unterschiede der Verfahren, Werkzeuge, Maschinen und Einrichtungen anhand konkreter Beispiele verdeutlichen sowie diese hinsichtlich ihrer Eignung für den jeweiligen Anwendungsfall analysieren und beurteilen.
- sind darüber hinaus in der Lage, das erarbeitete Wissen auf andere umformtechnische Fragestellungen zu übertragen und anzuwenden.

Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 99 Stunden

Organisatorisches
Vorlesungstermine freitags, wöchentlich. Die konkreten Termine werden in der ersten Vorlesung bekannt gegeben und auf der Institutshomepage und ILIAS veröffentlicht.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in ilias (https://ilias.studium.kit.edu/)
3.305 Teilleistung: Umweltphysik / Energie [T-BGU-103401]

Verantwortung: Prof. Dr. Mario Jorge Rodrigues Pereira da Franca
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-101760 - Umweltphysik / Energie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>6200112</td>
<td>Umweltphysik / Energie</td>
<td>2</td>
<td>Rodrigues Pereira da Franca, Zemann</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>8231103401</td>
<td>Umweltphysik / Energie</td>
<td>Rodrigues Pereira da Franca</td>
</tr>
<tr>
<td>SS 2022</td>
<td>8231103401</td>
<td>Umweltphysik / Energie</td>
<td>Nestmann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

testierte Übungsblätter

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
3.306 Teilleistung: Verbrennungsmotoren I [T-MACH-102194]

Verantwortung: Prof. Dr. Thomas Koch
Dr.-Ing. Heiko Kubach

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Kolbenmaschinen

Bestandteil von:
M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2133113</td>
<td>CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>4 SWS Vorlesung / Übung (VÜ) / 🗣</td>
<td>Koch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-102194 CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I</td>
<td>Kubach, Koch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-102194 Verbrennungsmotoren I</td>
<td>Koch, Kubach</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ⚠ Abgesagt

Erfolgskontrolle(n)
mündliche Prüfung, Dauer 25 min., keine Hilfsmittel

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

CO2-neutrale Verbrennungsmotoren und deren Kraftstoffe I
2133113, WS 21/22, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen](#)

Inhalt
Einleitung, Institutsvorstellung
Prinzip des Verbrennungsmotors
Charakteristische Kenngrößen
Bauteile
Kurbeltrieb
Brennstoffe
Ottomotorische Betriebsarten
Dieselmotorische Betriebsarten
Wasserstoffmotoren
Abgasemissionen

Organisatorisches
Übungstermine Donnerstags nach Bekanntgabe in der Vorlesung
3.307 Teilleistung: Verhaltensgenerierung für Fahrzeuge [T-MACH-105367]

Verantwortung: Maximilian Naumann, Moritz Werling

Einrichtung:
- KIT-Fakultät für Maschinenbau
- KIT-Fakultät für Maschinenbau/Institut für Mess- und Regelungstechnik

Bestandteil von:
- M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
- M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
- M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>2 SWS</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung (V)</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werling, Naumann</td>
<td>Verhaltensgenerierung für Fahrzeuge</td>
<td>2 SWS</td>
<td>Jedes Wintersemester</td>
</tr>
</tbody>
</table>

Legende: Online, Präsenz/Online gemischt, Präsenz, Abgesagt

Erfolgskontrolle(n)

- **schriftliche Prüfung**
 - 60 Minuten
 - Hilfsmittel: einfache wissenschaftliche Taschenrechner / programmierbare oder graphische Taschenrechner sind nicht erlaubt

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Verhaltensgenerierung für Fahrzeuge

Vorlesung (V)
- 2138336, WS 21/22, 2 SWS, Sprache: Deutsch, im Studierendenportal anzeigen

Inhalt

Kurzbeschreibung

Lernziele

Nachweis:

- schriftliche Prüfung

Arbeitsaufwand: 120 Stunden
Organisatorisches

Literaturhinweise
Foliensatz zur Veranstaltung wird als kostenlose pdf-Datei bereitgestellt. Weitere Empfehlungen werden in der Vorlesung bekannt gegeben.
3.308 Teilleistung: Vermessungskunde für Bauingenieure und Geowissenschaftler (unbenotet) [T-BGU-101683]

Verantwortung: Dr.-Ing. Norbert Rösch
Einrichtung: KIT-Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften
Bestandteil von: M-BGU-103752 - Vermessungskunde für Bauingenieure und Geowissenschaftler

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Kursnummer</th>
<th>Vorlesung</th>
<th>Übungen</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>6071202</td>
<td>1 SWS</td>
<td>(bauiBFw5-VERMK)</td>
<td>2 SWS</td>
<td>(bauiBFw5-VERMK)</td>
</tr>
<tr>
<td>SS 2022</td>
<td>6071203</td>
<td>2 SWS</td>
<td>(bauiBFw5-VERMK)</td>
<td></td>
<td>(bauiBFw5-VERMK)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfung</th>
<th>Kursnummer</th>
<th>Prüfungsort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>8280101683</td>
<td>(bauiBFw5-VERMK)</td>
<td>Rösch</td>
</tr>
</tbody>
</table>

Lernziele:
Die Studierenden …

- sind in der Lage, die Grundbegriffe einer Verzahnung zu beschreiben und können die in der Vorlesung vermittelten Grundlagen der Zahnrad- und Verzahnungstheorie erläutern.
- sind fähig, die verschiedenen Fertigungsverfahren und deren Maschinentechniken zur Herstellung von Verzahnungen anzugeben und deren Funktionsweise sowie Vor- und Nachteile zu erläutern.
- können die Grundlagen der Zahnrad- und Verzahnungstheorie sowie der Herstellungsverfahren von Verzahnungen auf neue Problemstellungen anwenden.
- können Messschritte zur Beurteilung von Verzahnungsqualitäten lesen und entsprechend interpretieren.
- sind in der Lage, auf Basis vorgegebener Anwendung eine geeignete Prozessauswahl für die Herstellung der Verzahnung zu treffen.
- sind in der Lage, die gesamte Prozesskette zur Herstellung von verzahnten Bauteilen zu benennen und deren jeweiligen Einfluss im Kontext der gesamten Prozesskette auf die resultierenden Werkstückeigenschaften zu beurteilen.

Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 99 Stunden
Organisatorisches
Start: 21.10.2021

Literaturhinweise

Medien:
Skript zur Veranstaltung wird über https://ilias.studium.kit.edu/ bereitgestellt.

Media:
Lecture notes will be provided in Ilias [https://ilias.studium.kit.edu/].
3.310 Teilleistung: Virtual Reality Praktikum [T-MACH-102149]

Verantwortung: Prof. Dr.-Ing. Jivka Ovtcharova
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Informationsmanagement im Ingenieurwesen
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Teilleistungsart
Prüfungsleistung anderer Art

Leistungspunkte
4

Notenskala
Drittelnoten

Turnus
Jedes Semester

Version
2

Lehrveranstaltungen

WS 21/22 2123375 Virtual Reality Praktikum 3 SWS Projekt (PRO) / 🧩 Ovtcharova, Mitarbeiter

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-102149 Virtual Reality Praktikum Ovtcharova, Häfner
SS 2022 76-T-MACH-102149 Virtual Reality Praktikum Ovtcharova, Häfner

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ☓ Abgesagt

Erfolgskontrolle(n)
Prüfungsleistung anderer Art (benotet)

Voraussetzungen
Keine

Anmerkungen
Teilnehmerzahl begrenzt

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Virtual Reality Praktikum
2123375, WS 21/22, 3 SWS, Sprache: Deutsch/Englisch, Im Studierendenportal anzeigen

Inhalt
• Grundlagen und Einführung in VR (Hardware, Software, Anwendungen)
• Einarbeitung in die Entwicklungsumgebungen (PolyVR, Blender, …)
• Erstellen eigener VR-Anwendungen in Kleingruppen

Organisatorisches
Siehe Homepage zur Lehrveranstaltung

Literaturhinweise
Keine / None
3.311 Teilleistung: Volkswirtschaftslehre I: Mikroökonomie [T-WIWI-102708]

Verantwortung: Prof. Dr. Clemens Puppe
Prof. Dr. Johannes Philipp Reiß

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101431 - Volkswirtschaftslehre

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte 5
Notenskala Drittelnoten
Turnus Jedes Wintersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2610012</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 🧩</td>
<td>Puppe, Kretz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Veranstaltungstitel</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7900255</td>
<td>Volkswirtschaftslehre I: Mikroökonomie</td>
<td>Puppe</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>7900259</td>
<td>Volkswirtschaftslehre I: Mikroökonomie (Nachklausur)</td>
<td>Puppe</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗹 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Voraussetzungen
Keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Volkswirtschaftslehre I: Mikroökonomie
2610012, WS 21/22, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt
Inhalt

In den beiden Hauptteilen der Vorlesung werden Fragen der mikroökonomischen Entscheidungstheorie (Haushalt- und Firmenentscheidungen) sowie Fragen der Markttheorie (Gleichgewichte und Effizienz auf Konkurrenz-Märkten) behandelt. Im letzten Teil der Vorlesung werden Probleme des unvollständigen Wettbewerbs (Oligopolmärkte) sowie Grundzüge der Spieltheorie und der Wohlfahrtsökonomie vermittelt.

Hauptziel der Veranstaltung ist die Vermittlung der Grundlagen des Denkens in ökonomischen Modellen. Speziell soll der Studierende in die Lage versetzt werden, Gütermärkte und die Determinanten von Marktergebnissen zu analysieren. Im Einzelnen sollen die Studierenden lernen,

- einfache mikroökonomische Begriffe anzuwenden,
- die ökonomische Struktur von realen Phänomenen zu erkennen,
- die Wirkungen von wirtschaftspolitischen Maßnahmen auf das Verhalten von Marktteilnehmern (in einfachen ökonomischen Entscheidungssituationen) zu beurteilen und
- evtl. Alternativmaßnahmen vorzuschlagen,
- als Besucher eines Tutoriums einfache ökonomische Zusammenhänge anhand der Bearbeitung von Übungsaufgaben zu erläutern und durch eigene Diskussionsbeiträge zum Lernerfolg der Tutoriumsgruppe beizutragen,
- mit der mikroökonomischen Basisliteratur umzugehen.

Damit erwerbt der Studierende das notwendige Grundlagenwissen, um in der Praxis

- die Struktur ökonomischer Probleme auf mikroökonomischer Ebene zu erkennen und Lösungsvorschläge dafür zu präsentieren,
- aktive Entscheidungsunterstützung für einfache ökonomische Entscheidungsprobleme zu leisten.

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (120 min) (nach §4(2), 1 SPO).

Gesamtaufwand bei 5 Leistungspunkten: ca. 150 Stunden
Präsenzzeit: 45 Stunden
Selbststudium: 105 Stunden

Literaturhinweise

- H. Varian, Grundzüge der Mikroökonomik, 5. Auflage (2001), Oldenburg Verlag
- Pindyck, Robert S./Rubinfeld, Daniel L., Mikroökonomie, 6. Aufl., Pearson. Münichen, 2005
3.312 Teilleistung: Von der Arbeitsanalyse zur Planung beruflicher Bildung [T-GEISTSOZ-101134]

Verantwortung: Vertretung der Professur für Berufspädagogik

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100659 - Planung beruflicher Bildung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Inhaltsfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012129</td>
<td>Planung beruflicher Bildung: Arbeitsanalyse und ... (PädBA, IP, IPI)</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Berufspädagogik</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5012115</td>
<td>Von der Arbeitsanalyse zur Planung beruflicher Bildung</td>
<td>2</td>
<td>Seminar (S) / 🧩</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>Modus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>7400324</td>
<td>Von der Arbeitsanalyse zur Planung beruflicher Bildung</td>
<td>Schwarz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Von der Arbeitsanalyse zur Planung beruflicher Bildung
5012115, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Seminar (S) Präsenz/Online gemischt

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗠 Präsenz, ✗ Abgesagt
Inhalt

Lernziele:

Inhalt:

Literatur:

Voraussetzungen für ECTS-Nachweis (Studienleistung):

Organisatorisches
Anmeldung und weitere Informationen ab 01.04.2022 unter https://ilias.studium.kit.edu/ oder unter Arbeitsbereich: ILIAS-Kurs öffnen!
3.313 Teilleistung: Vorbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum [T-GEISTSOZ-101162]

Verantwortung: Gerd Graf
Dr. Alexandra Zelfel

Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften

Bestandteil von: M-GEISTSOZ-100672 - Praxis des beruflichen Lehrens und Lernens

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>1</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5012113 A</td>
<td>Vorbereitung des Schulpraktikums Gruppe 2 (IP, IPI)</td>
<td>2 SWS</td>
<td>Seminar (S)</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5012113 B</td>
<td>Vorbereitung des Schulpraktikums Gruppe 2 (IP, IPI)</td>
<td>1 SWS</td>
<td>Seminar (S)</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400315</td>
<td>Vorbereitendes Seminar zum Berufspädagogischen Praktikum bzw. Schulpraktikum</td>
<td>Zelfel, Graf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung nach Definition der/s Dozentin/en, beispielsweise in Form eines Referats von ca. 30 Minuten oder der aktiven Mitwirkung in einer Arbeitsgruppe.

Voraussetzungen

keine
3.314 Teilleistung: Wahrscheinlichkeitstheorie [T-ETIT-101952]

Verantwortung: Dr.-Ing. Holger Jäkel
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: M-ETIT-102104 - Wahrscheinlichkeitstheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>5</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Übung</th>
<th>Vorlesung/Übung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2310505</td>
<td>Wahrscheinlichkeitstheorie</td>
<td>2</td>
<td></td>
<td>Vorlesung (V) / 🟦</td>
<td>Jäkel</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2310507</td>
<td>Übungen zu 2310505 Wahrscheinlichkeitstheorie</td>
<td>1</td>
<td></td>
<td>Übung (Ü) / 🟦</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Prüfungsnummer</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7310505</td>
<td>Wahrscheinlichkeitstheorie</td>
<td>Jäkel</td>
</tr>
<tr>
<td>SS 2022</td>
<td>7310505</td>
<td>Wahrscheinlichkeitstheorie</td>
<td>Jäkel</td>
</tr>
</tbody>
</table>

Legende: 🥑 Online, 🟦 Präsenz/Online gemischt, 🧵 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten.

Voraussetzungen

keine

Empfehlungen

Inhalte der Höheren Mathematik I und II und Digitaltechnik werden benötigt.
Teilleistung: Wärme- und Stoffübertragung [T-MACH-105292]

Verantwortung: Prof. Dr. Ulrich Maas
Dr.-Ing. Chunkan Yu

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Thermodynamik

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrveranstaltungsart</th>
<th>Dauer</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2165512</td>
<td>Wärme- und Stoffübertragung</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>ca. 3 h</td>
<td>Drittelnoten</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3122512</td>
<td>Heat and Mass Transfer</td>
<td>2</td>
<td>Vorlesung (V) / Präsenz/Online gemischt</td>
<td>Maas</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Notenskala</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>Maas</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105292</td>
<td>Wärme- und Stoffübertragung</td>
<td>Maas</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Prüfungsleistung schriftlich; Dauer ca. 3 h

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Wärme- und Stoffübertragung

2165512, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Stationäre und instationäre Wärmeleitung in homogenen Materialien; Platten, Rohrschalen und Kugelschalen
- Molekulare Diffusion in Gasen; Analogie der Stoffdiffusion zur Wärmeleitung
- Konvektiver, erzwungener Wärmeübergang in durchströmten Rohren/Kanälen sowie bei überströmten Platten und umströmten Profilen
- Konvektiver Stoffübergang, Stoff-/Wärmeübergangs-Analogie
- Mehrphasiger konvektiver Wärmeübergang (Kondensation, Verdampfung)
- Strahlungswärmetransport

Literaturhinweise

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"

V Heat and Mass Transfer

3122512, SS 2022, 2 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

- Stationäre und instationäre Wärmeleitung in homogenen Materialien; Platten, Rohrschalen und Kugelschalen
- Molekulare Diffusion in Gasen; Analogie der Stoffdiffusion zur Wärmeleitung
- Konvektiver, erzwungener Wärmeübergang in durchströmten Rohren/Kanälen sowie bei überströmten Platten und umströmten Profilen
- Konvektiver Stoffübergang, Stoff-/Wärmeübergangs-Analogie
- Mehrphasiger konvektiver Wärmeübergang (Kondensation, Verdampfung)
- Strahlungswärmetransport
Organisatorisches
Bitte beachten Sie den Aushang.

Literaturhinweise

- Maas ; Vorlesungsskript "Wärme- und Stoffübertragung"
3.316 Teilleistung: Wasserstoff und reFuels – motorische Energieumwandlung [T-MACH-111585]

Verantwortung: Dr.-Ing. Heiko Kubach
Einrichtung: KIT-Fakultät für Maschinenbau
Bestandteil von: M-MACH-102607 - Schwerpunkt: Kraftfahrzeugtechnik
M-MACH-102818 - Schwerpunkt: Kraftfahrzeugtechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbeschriftung</th>
<th>SWS</th>
<th>Prüfung (V)</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2134155</td>
<td>Wasserstoff und reFuels – motorische Energieumwandlung</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Koch</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbeschriftung</th>
<th>SWS</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76T-MACH-111585</td>
<td>Wasserstoff und reFuels – motorische Energieumwandlung</td>
<td></td>
<td>Koch</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung, ca. 25 Minuten, keine Hilfsmittel

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wasserstoff und reFuels – motorische Energieumwandlung

2134155, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt

Neuartige CO2 neutrale Kraftstoffe wie gasförmiger Wasserstoff aber auch flüssige synthetische Kraftstoffe stellen häufig spezifische Anforderungen an motorisches Systeme, die vom Betrieb mit konventionellen Kraftstoffen deutlich abweichen. Diese besonderen Aspekte der motorischen Energieumwandlung werden in dieser Vorlesung behandelt.

Institutsvorstellung und Einleitung

Thermodynamik des Verbrennungsmotors

Grundlagen motorischer Prozesse

Ladungswechsel

Strömungsfeld

Wandwärmeverluste

Verbrennung beim Ottomotor

APR und DVA

Verbrennung beim Dieselmotor

Spezifische Themen der Wasserstoffverbrennung

Restwärmenutzung
3.317 Teilleistung: Wellenausbreitung [T-MACH-105443]

Verantwortung: Prof. Dr.-Ing. Wolfgang Seemann
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Technische Mechanik
Bestandteil von: M-MACH-102601 - Schwerpunkt: Automatisierungstechnik

Lehrveranstaltungen
| Semester | Code | Lehrveranstaltung | SWS | Prüfung
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2161219</td>
<td>Wellenausbreitung</td>
<td>2</td>
<td>Vorlesung (V) / 🧩 Seemann, Bitner</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen
<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>Seemann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105443</td>
<td>Wellenausbreitung</td>
<td>Seemann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
mündliche Prüfung, 30 min.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wellenausbreitung
2161219, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Inhalt

Literaturhinweise
3.318 Teilleistung: Werkstoffkunde I & II [T-MACH-105145]

Verantwortung:
Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von:
M-MACH-102562 - Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Leistungspunkte</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>2173550</td>
<td>Werkstoffkunde I für mach, phys</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 📜</td>
<td>Pundt</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>2173552</td>
<td>Übungen zu Werkstoffkunde I für mach, phys</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📜</td>
<td>Pundt, Kauffmann</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3173008</td>
<td>Materials Science and Engineering I (Lecture)</td>
<td>4 SWS</td>
<td>Vorlesung (V) / 📜</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>3173009</td>
<td>Materials Science and Engineering I (Tutorial)</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📜</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2174560</td>
<td>Werkstoffkunde II für mach, phys</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 📜</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2022</td>
<td>2174563</td>
<td>Übungen zu Werkstoffkunde II für mach, phys</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📜</td>
<td>Heilmaier, Kauffmann</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3174015</td>
<td>Materials Science and Engineering II (Lecture)</td>
<td>3 SWS</td>
<td>Vorlesung (V) / 📜</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2022</td>
<td>3174026</td>
<td>Materials Science and Engineering II (Tutorials)</td>
<td>1 SWS</td>
<td>Übung (Ü) / 📜</td>
<td>Gibmeier, Mitarbeiter</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-105145-English</td>
<td>Werkstoffkunde I & II (Exam in English)</td>
<td>Heilmaier, Pundt, Gibmeier</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105145</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105145-2</td>
<td>Werkstoffkunde I, II</td>
<td>Heilmaier, Pundt</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105145-English</td>
<td>Werkstoffkunde I & II (Exam in English)</td>
<td>Heilmaier, Gibmeier</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105145-Re-English</td>
<td>Werkstoffkunde I & II (Re-exam in English)</td>
<td>Gibmeier, Heilmaier</td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-105145-W</td>
<td>Werkstoffkunde I & II (Wiederholer)</td>
<td>Heilmaier, Pundt</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen

Vorbedingung für mündliche Modulprüfung: Erfolgreiche Teilnahme am "Praktikum in Werkstoffkunde" (unbenoteter Schein).

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105146 - Werkstoffkunde Praktikum muss erfolgreich abgeschlossen worden sein.

Anmerkungen

Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.
Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Werkstoffkunde I für mach, phys
2173550, WS 21/22, 4 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]

Inhalt
- Atomaufbau und atomare Bindungen
- Kristalline Festkörperstrukturen
- Störungen in kristallinen Festkörperstrukturen
- Amorphe und teilkristalline Festkörperstrukturen
- Legierungslehre
- Materietransport und Umwandlung im festen Zustand
- Mikroskopische Methoden
- Untersuchung mit Röntgen- und Teilchenstrahlen
- Zerstörungsfreie Werkstoffprüfung

Lernziele:
- Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
- Die Studierenden können die Eigenschaftsprofile beschreiben und Anwendungsgebiete der wichtigsten Ingenieurwerkstoffe nennen.
- Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung beschreiben und deren Auswertung erläutern. Sie können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Voraussetzungen:
- Keine, Empfehlungen: Keine.

Arbeitsaufwand:
- Präsenzzeit: 53 Stunden
- Selbststudium: 157 Stunden

Literaturhinweise
- Vorlesungsskript; Übungsaufgabenblätter;
- Shackelford, J.F.
 Werkstofftechnologie für Ingenieure
 Verlag Pearson Studium, 2005

Übungen zu Werkstoffkunde I für mach, phys
2173552, WS 21/22, 1 SWS, Sprache: Deutsch, [Im Studierendenportal anzeigen]
Inhalt
Beispielhafte Aufgaben

Lernziele:
Die Studierenden sind in der Lage, das in der Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.
Sie können selbständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.
Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:
Vorlesung Werkstoffkunde I

Arbeitsaufwand:
21 Präsenzstunden + 21 Stunden Vor-/Nacharbeit

Literaturhinweise
Institut für Werkstoffkunde I: Vorlesungsskript

Materials Science and Engineering I (Lecture)
3173008, WS 21/22, 4 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

V Vorlesung (V)
Präsenz/Online gemischt

Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymerwerkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.
Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.
Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.
Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.
Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten
Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Organisatorisches
The lecture will be online. If the Corona regulations and the infection situation permit, possibly also in attendance. This will be decided at the beginning of the semester when the number of registrations has been determined. The lecture notes and supplementary material will be managed via ILIAS. The registration will be possible without restriction until 25.10.2021. Subsequently, registration is only possible by direct contacting Dr.-Ing. Jens Gibmeier.
3 TEILLEISTUNGEN

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering I (Tutorial)
3173009, WS 21/22, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt

Inhalt
Beispielhafte Aufgaben

Lernziele:
Die Studierenden sind in der Lage, das in der Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.
Sie können selbständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.
Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:
Vorlesung Werkstoffkunde II

Arbeitsaufwand:

Organisatorisches
information please see entries under ‘lecture’
02.95 ID SR Raum 101

Literaturhinweise
see lecture notes

Werkstoffkunde II für mach, phys
2174560, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V)
Präsenz/Online gemischt

Ingenieurpädagogik, 20151 (B.Sc.)
Modulhandbuch mit Stand vom 20.03.2022
Inhalt

Themen:
- Eisenbasiswerkstoffe
- Nichteisenmetalle
- Keramische Werkstoffe
- Glaswerkstoffe
- Polymere Werkstoffe
- Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.

Die Studierenden sind in der Lage die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ablesen und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten

Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Organisatorisches
Weitere Informationen zu dieser Veranstaltung finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise
Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos

Weiterführende Informationen gibt es hier:
https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei im KIT-Netz erhältlich)

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei im KIT-Netz erhältlich)

https://www.ifw-dresden.de/de/ifw-institutes/ikm/lectures/vorlesungsskript-physikalische-werkstoffeigenschaften (frei zugänglich)

Übungen zu Werkstoffkunde II für mach, phys
2174563, SS 2022, 1 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Übung (Ü)
Präsenz/Online gemischt
Inhalt

Lernziele:

Die Studierenden sind in der Lage, das in der Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.

Sie können selbständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.

Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:

Vorlesung zu Werkstoffkunde II

Organisatorisches

Weitere Informationen finden Sie hier: https://www.iam.kit.edu/wk/lehre.php

Literaturhinweise

Vorlesungsskript, Vorlesungsvideos, Übungsblätter, Übungsvideos

Weiterführende Informationen gibt es hier:

https://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC117341509

http://dx.doi.org/10.1007/978-3-642-36603-1 (frei über die KIT-Lizenz abrufbar)

http://www.ifw-dresden.de/institutes/imw/lectures/pwe

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC309606810

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC052463656

http://services.bibliothek.kit.edu/primo/start.php?recordid=KITSRC27759961X

http://dx.doi.org/10.1007/978-3-662-47952-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-22561-1 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-642-17717-0 (frei über die KIT-Lizenz abrufbar)

http://dx.doi.org/10.1007/978-3-658-13795-3 (frei über die KIT-Lizenz abrufbar)
Inhalt
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können typische Vertreter der einzelnen Werkstoffhauptgruppen nennen und die grundsätzlichen Unterschiede zwischen den einzelnen Vertreter beschreiben.

Die Studierenden sind in der Lage, die grundlegenden Mechanismen zur Festigkeitssteigerung von Eisen- und Nichteisenwerkstoffen zu beschreiben und anhand von Phasendiagrammen und ZTU-Schaubildern zu reflektieren.

Die Studierenden können typische Vertreter der einzelnen Werkstoffgruppen nennen und die entscheidenden Unterschiede zwischen den einzelnen Vertretern erläutern.

Die Studierenden können gegebene Phasen-, ZTU oder andere werkstoffrelevante Diagramme interpretieren, daraus Informationen ableiten und daraus die Gefügeentwicklung ableiten.

Die Studierenden können die in Polymerwerkstoffen, Metallen, Keramiken und Verbundwerkstoffen jeweils auftretenden werkstoffkundlichen Phänomene beschreiben und Unterschiede aufzeigen.

Voraussetzungen:
Werkstoffkunde I

Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 108 Stunden

Nachweis:
Kombiniert mit Werkstoffkunde I, mündlich; ca. 30 Minuten

Voraussetzung für die Zulassung zur Prüfung ist eine erfolgreiche Teilnahme am Werkstoffkundepraktikum.

Literaturhinweise
Vorlesungsskript; Übungsaufgabenblätter;

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering II (Tutorials)
3174026, SS 2022, 1 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Inhalt
Beispielhafte Aufgaben

Lernziele:
Die Studierenden sind in der Lage, das in der Vorlesung und im Selbststudium erarbeitete Wissen anzuwenden und auf gegebene Fragestellungen zu übertragen.

Sie können selbständig auf Basis grundlegender mathematischer Zusammenhänge Berechnungen zu werkstoffkundlichen Fragestellungen ausführen, wobei Sie in der Lage sind, zu erkennen, welche mathematischen Formeln für die Berechnungen herangezogen werden müssen.

Die Studierenden können werkstoffkundliche Zusammenhänge qualitativ und quantitativ diskutieren und sind in der Lage, diese Zusammenhänge mit eigenen Worten wiederzugeben und zu präsentieren.

Voraussetzungen:
Vorlesung Werkstoffkunde II

Arbeitsaufwand:

Literaturhinweise
see lecture notes
3.319 Teilleistung: Werkstoffkunde Praktikum [T-MACH-105146]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmaier
Prof. Dr. Astrid Pundt

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde
Voraussetzung für: T-MACH-105145 - Werkstoffkunde I & II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>3</td>
<td>best./nicht best.</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2022 | 2174597 | Experimentelles Praktikum in Werkstoffkunde | 3 SWS | Praktikum (P) / 📚 | Wagner, Heilmaier, Pundt, Dietrich, Guth, Kauffmann |
| SS 2022 | 3174016 | Materials Science and Engineering Lab Course | 3 SWS | Praktikum (P) / 📚 | Gibmeier, Heilmaier, Pundt |

Prüfungsveranstaltungen

| WS 21/22 | 76-T-MACH-105146 | Werkstoffkunde Praktikum | Heilmaier |
| SS 2022 | 76-T-MACH-105146 | Werkstoffkunde Praktikum | Heilmaier, Pundt |

Legende: 🖥 Online, 📚 Präsenz/Online gemischt, 🗣 Präsenz, 🗑 Abgesagt

Erfolgskontrolle(n)

Mündliches Kolloquium zu Beginn jedes Themenblocks; unbenotete Bescheinigung der erfolgreichen Teilnahme.

Voraussetzungen

keine

Anmerkungen

Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzplicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Experimentelles Praktikum in Werkstoffkunde

2174597, SS 2022, 3 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
Praktikum (P)
Präsenz/Online gemischt
Inhalt
Durchführung und Auswertung von Laborversuchen zu folgenden fünf Themenblöcken:

Mechanische Werkstoffprüfung
Nichtmetallische Werkstoffe
Gefüge und Eigenschaften
Schwingende Beanspruchung / Ermüdung
Fertigungstechnische Werkstoffbeeinflussung

Lernziele:
Die Studierenden können die wesentlichen Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten beschreiben.

Die Studierenden können die wichtigsten Methoden der Werkstoffcharakterisierung benennen, Ihre Durchführung und die notwendigen Auswertemethoden beschreiben und können Werkstoffe anhand der damit bestimmten Kennwerte beurteilen.

Die Studierenden sind in der Lage zur Klärung werkstoffkundlicher Fragestellungen geeignete Versuche auszuwählen, sie können die praktischen Versuchsabläufe beschreiben und diese Versuche selbst durchführen und können aus den gemessenen und erhobenen Daten entsprechende Kennwerte berechnen und diese interpretieren.

Voraussetzungen:
Werkstoffkunde I & II

Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden

Organisatorisches
Blockveranstaltung. Infos durch Aushang am IAM-WK und in der VL WK II. Anmeldung erforderlich.

Literaturhinweise
Praktikumsskriptum
Shackelford, J.F. Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005

Materials Science and Engineering Lab Course
3174016, SS 2022, 3 SWS, Sprache: Englisch, Im Studierendenportal anzeigen

Praktikum (P)
Präsenz/Online gemischt
Literaturhinweise
Praktikumsskriptum

Shackelford, J.F.
Werkstofftechnologie für Ingenieure
Verlag Pearson Studium, 2005
3.320 Teilleistung: Werkstoffrecycling und Nachhaltigkeit [T-MACH-110937]

Verantwortung: Prof. Dr.-Ing. Peter Elsner
Dr.-Ing. Wilfried Liebig

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102618 - Schwerpunkt: Produktionstechnik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2022</td>
<td>2173520</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>2</td>
<td>Vorlesung (V) / 🧩</td>
<td>Liebig</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>76-T-MACH-110937</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>Liebig</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>76-T-MACH-110937</td>
<td>Werkstoffrecycling und Nachhaltigkeit</td>
<td>Liebig</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗑️ Abgesagt

Erfolgskontrolle(n)

mündliche Prüfung (ca. 25 Min.)

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Vorlesung Werkstoffrecycling und Nachhaltigkeit

2173520, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung (V) Präsenz/Online gemischt

Inhalt

1. Rechtliche und Geschichtliche Grundlagen
2. Klimawandel, Ökologie und Stoffströme
3. Nachhaltigkeit im Allgemeinen
4. Produktverantwortung, recyclinggerechte Konstruktion und geplante Obsoleszenz
5. Allgemeine und rechtliche Grundlagen des Recyclings und Materialkreisläufe
6. Materialtrennung, Sortierung und Aufbereitung
7. Recycling von Metallen
8. Recycling von Polymeren und Verbundwerkstoffen
9. Recycling von Alltagsmaterialien
10. Alternative Materialien und Konstruktionen
11. Materialien für erneuerbare Energien
12. ggf. Fallstudien

Organisatorisches

Die LV wird ab SS 2022 jeweils im SS stattfinden.

Literaturhinweise

Skript wird in der Vorlesung ausgegeben
T 3.321 Teilleistung: Werkzeugmaschinen und hochpräzise Fertigungssysteme [T-MACH-110962]

Verantwortung: Prof. Dr.-Ing. Jürgen Fleischer
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Produktionstechnik
Bestandteil von: M-MACH-102589 - Schwerpunkt: Produktionssysteme
M-MACH-102601 - Schwerpunkt: Automatisierungstechnik
M-MACH-102618 - Schwerpunkt: Produktionstechnik
Voraussetzung für: T-MACH-110335 - International Production Engineering B

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

WS 21/22 2149910 Werkzeugmaschinen und hochpräzise Fertigungssysteme 6 SWS Vorlesung / Übung (VÜ) / Fleischer

Prüfungsveranstaltungen

WS 21/22 76-T-MACH-110962 Werkzeugmaschinen und hochpräzise Fertigungssysteme Fleischer
SS 2022 76-T-MACH-110962 Werkzeugmaschinen und hochpräzise Fertigungssysteme Fleischer

Erfolgskontrolle(n)
Mündliche Prüfung (40 Minuten)

Voraussetzungen
T-MACH-102158 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-109055 - Werkzeugmaschinen und Handhabungstechnik darf nicht begonnen sein.
T-MACH-110963 - Werkzeugmaschinen und hochpräzise Fertigungssystem darf nicht begonnen sein.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

V Werkzeugmaschinen und hochpräzise Fertigungssysteme
2149910, WS 21/22, 6 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Vorlesung / Übung (VÜ) Präsenz/Online gemischt
Inhalt
Mit Gastvorträgen aus der Industrie wird die Vorlesung durch Einblicke in die Praxis abgerundet.

Die Themen im Einzelnen sind:

- Strukturelemente dynamischer Fertigungssysteme
- Vorschubachsen: Hochpräzise Positionierung
- Hauptantriebe spanender Werkzeugmaschinen
- Periphere Einrichtungen
- Maschinensteuerung
- Messtechnische Beurteilung
- Instandhaltungsstrategien und Zustandsüberwachung
- Prozessüberwachung
- Entwicklungsprozess für Fertigungsmaschinen
- Maschinenbeispiele

Lernziele:
Die Studierenden …

- sind in der Lage, den Einsatz und die Verwendung von Werkzeugmaschinen und hochpräzisen Fertigungssystemen zu beurteilen und diese hinsichtlich ihrer Eigenschaften sowie ihres Aufbaus zu unterscheiden.
- können die wesentlichen Elemente von Werkzeugmaschinen und hochpräzisen Fertigungssystemen (Gestell, Hauptspindel, Vorschubachsen, Periphere Einrichtungen, Steuerung und Regelung) beschreiben und erörtern.
- sind in der Lage, die wesentlichen Komponenten von Werkzeugmaschinen und hochpräzisen Fertigungssystemen auszuwählen und auszulegen.
- sind befähigt, Werkzeugmaschinen und hochpräzise Fertigungssysteme nach technischen und wirtschaftlichen Kriterien auszuwählen und zu beurteilen.

Arbeitsaufwand:

MACH:
- Präsenzzeit: 63 Stunden
- Selbststudium: 177 Stunden

WING/TVWL:
- Präsenzzeit: 63 Stunden
- Selbststudium: 207 Stunden

Organisatorisches
Start: 18.10.2021
Vorlesungstermine montags und mittwochs, Übungstermine donnerstags.
Bekanntgabe der konkreten Übungstermine erfolgt in der ersten Vorlesung.

Lectures on Mondays and Wednesdays, tutorial on Thursdays.
The tutorial dates will announced in the first lecture.

Literaturhinweise
Medien:
Skript zur Veranstaltung wird über Ilias (https://ilias.studium.kit.edu/) bereitgestellt.

Media:
Lecture notes will be provided in Ilias (https://ilias.studium.kit.edu/).
3.322 Teilleistung: Windkraft [T-MACH-105234]

Verantwortung: Norbert Lewald
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Thermische Strömungsmaschinen

Bestandteil von:
- M-MACH-102623 - Schwerpunkt: Grundlagen der Energietechnik
- M-MACH-102816 - Schwerpunkt: Grundlagen der Energietechnik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Veranstaltung (Veranst.)</th>
<th>Veranstaltungskenummer</th>
<th>Lehrveranstaltungsart</th>
<th>Veranstaltungsbeginn</th>
<th>Veranstaltungsende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Windkraft</td>
<td>2157381</td>
<td>Windkraft</td>
<td>Lewald, Pritz</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 21/22</th>
<th>Veranstaltung (Veranst.)</th>
<th>Veranstaltungskenummer</th>
<th>Lehrveranstaltungsart</th>
<th>Veranstaltungsbeginn</th>
<th>Veranstaltungsende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>Windkraft</td>
<td>76-T-MACH-105234</td>
<td>Windkraft</td>
<td>Lewald</td>
<td></td>
</tr>
<tr>
<td>SS 2022</td>
<td>Windkraft</td>
<td>76-T-MACH-105234</td>
<td>Windkraft</td>
<td>Lewald</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🏬 Online, ☕ Präsenz/Online gemischt, 🗣 Präsenz, ☝ Abgesagt

Erfolgskontrolle(n)

schriftliche Prüfung, 120 Minuten

Voraussetzungen

keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Windkraft
WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen
3.323 Teilleistung: Wissenschaftliches Arbeiten [T-GEISTSOZ-103237]

Verantwortung: Prof. Dr. Ulrich Ebner-Priemer
Einrichtung: KIT-Fakultät für Geistes- und Sozialwissenschaften/Institut für Sport und Sportwissenschaft
Bestandteil von: M-GEISTSOZ-100922 - Einführung Sportwissenschaft

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung schriftlich</td>
<td>2</td>
<td>best./nicht best.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungspunkt</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>5016200</td>
<td>Wissenschaftliches Arbeiten - A</td>
<td>2 SWS</td>
<td>Ebner-Priemer, Koch</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5016210</td>
<td>Wissenschaftliches Arbeiten - B</td>
<td>2 SWS</td>
<td>Ebner-Priemer, Santangelo</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5016220</td>
<td>Wissenschaftliches Arbeiten - C</td>
<td>2 SWS</td>
<td>Ebner-Priemer, Timm</td>
</tr>
<tr>
<td>WS 21/22</td>
<td>5016230</td>
<td>Wissenschaftliches Arbeiten - D</td>
<td>2 SWS</td>
<td>Ebner-Priemer, Giurgiu</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016200</td>
<td>Wissenschaftliches Arbeiten - A</td>
<td>2 SWS</td>
<td>Henn, Oriwol</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016210</td>
<td>Wissenschaftliches Arbeiten - B</td>
<td>2 SWS</td>
<td>Henn, Oriwol</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016220</td>
<td>Wissenschaftliches Arbeiten - C</td>
<td>2 SWS</td>
<td>Henn, Oriwol</td>
</tr>
<tr>
<td>SS 2022</td>
<td>5016230</td>
<td>Wissenschaftliches Arbeiten - D</td>
<td>2 SWS</td>
<td>Henn, Oriwol</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungspunkt</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22</td>
<td>7400006</td>
<td>Wissenschaftliches Arbeiten</td>
<td>Ebner-Priemer</td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗂 Präsenz, ✗ Abgesagt

Voraussetzungen
keine

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wissenschaftliches Arbeiten - A
5016200, WS 21/22, 2 SWS, Im Studierendenportal anzeigen
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in PS: 30 Stunden
2. Projektarbeit im PS: 20 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 10

Lernziele:

Wissenschaftliches Arbeiten - B
5016210, WS 21/22, 2 SWS, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in PS: 30 Stunden
2. Projektarbeit im PS: 20 Stunden
3. Klausurvorbereitung und Präsenzzeit in der Klausur: 10

Lernziele:

Wissenschaftliches Arbeiten - C
5016220, WS 21/22, 2 SWS, Im Studierendenportal anzeigen
Inhalt
Lerninhalt:

Arbeitsaufwand:
1. Präsenzzeiten in PS: 30 Stunden

Lernziele:
Inhalt
Lerninhalt:

Arbeitsaufwand:
Präsenzzeiten in PS: 30 Stunden
Projektarbeit im PS: 20 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 10 Stunden

Lernziele:

Wissenschaftliches Arbeiten - B
5016210, SS 2022, 2 SWS, Sprache: Deutsch,
Im Studierendenportal anzeigen
Proseminar (PS)
Online

Inhalt
Lerninhalt:

Arbeitsaufwand:
Präsenzzeiten in PS: 30 Stunden
Projektarbeit im PS: 20 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 10 Stunden

Lernziele:
Inhalt
Lerninhalt:

Arbeitsaufwand:
Präsenzzeiten in PS: 30 Stunden
Projektarbeit im PS: 20 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 10 Stunden

Lernziele:

Wissenschaftliches Arbeiten - D
5016230, SS 2022, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Lerninhalt:

Arbeitsaufwand:
Präsenzzeiten in PS: 30 Stunden
Projektarbeit im PS: 20 Stunden
Klausurvorbereitung und Präsenzzeit in der Klausur: 10 Stunden

Lernziele:
3.324 Teilleistung: Wissenschaftliches Programmieren für Ingenieure [T-MACH-100532]

Verantwortung: Prof. Dr. Peter Gumbsch
Dr. Daniel Weygand

Einrichtung:
KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Computational Materials Science

Bestandteil von: M-MACH-102746 - Wahlpflichtmodul

Teilleistungsart
Prüfungsleistung schriftlich

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Notenskala</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Drittelnoten</td>
<td>Jedes Wintersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungstitel</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2181738</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>2 SWS</td>
<td>Vorlesung (V) / 🗣</td>
<td>Weygand, Gumbsch</td>
</tr>
<tr>
<td>WS 21/22 2181739</td>
<td>Übungen zu Wissenschaftliches Programmieren für Ingenieure</td>
<td>2 SWS</td>
<td>Übung (Ü) / 🖥</td>
<td>Weygand</td>
</tr>
</tbody>
</table>

Prüfungsveranstaltungen

<table>
<thead>
<tr>
<th>Prüfungsveranstaltung</th>
<th>Prüfungstitel</th>
<th>Prüfungsform</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 76-T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>Weygand, Gumbsch</td>
<td></td>
</tr>
<tr>
<td>SS 2022 76-T-MACH-100532</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>Weygand, Gumbsch</td>
<td></td>
</tr>
</tbody>
</table>

Legende: 🖥 Online, 🧩 Präsenz/Online gemischt, 🗣 Präsenz, ✗ Abgesagt

Erfolgskontrolle(n)

Schriftliche Prüfung, 90 Minuten

Voraussetzungen

Die Teilleistung kann nicht mit der Teilleistung "Anwendung höherer Programmiersprachen im Maschinenbau" (T-MACH-105390) kombiniert werden.

Im Folgenden finden Sie einen Auszug der relevanten Lehrveranstaltungen zu dieser Teilleistung:

Wissenschaftliches Programmieren für Ingenieure

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungstitel</th>
<th>SWS</th>
<th>Sprache</th>
<th>Lehrveranstaltungsportal</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 21/22 2181738</td>
<td>Wissenschaftliches Programmieren für Ingenieure</td>
<td>2 SWS</td>
<td>Deutsch</td>
<td>Im Studierendenportal anzeigen</td>
</tr>
</tbody>
</table>

Vorlesung (V)
Präsenz
3 TEILLEISTUNGEN

Teilleistung: Wissenschaftliches Programmieren für Ingenieure [T-MACH-100532]

Inhalt
1. Einführung: warum wissenschaftliches Rechnen
2. Rechnerarchitekturen
3. Einführung in Unix/Linux
4. Grundlagen der Programmiersprache C++
 - Programmstruktur
 - Datentypen, Operatoren, Steuerstrukturen
 - dynamische Speicherverwaltung
 - Funktionen
 - Klassen, Vererbung
 * OpenMP Parallelisierung
5. Numerik / Algorithmen
 - finite Differenzen
 * MD Simulation: Lösung von Differenzialgleichungen 2ter Ordnung
 * Partikelsimulation
 * lineare Gleichungslöser

Der/die Studierende kann

- die Programmiersprache C++ anwenden, um Programme für das wissenschaftliche Rechnen zu erstellen
- Programme zur Nutzung auf Parallelrechnern anpassen
- geeignete numerische Methoden zur Lösung von Differentialgleichungen auswählen.

Die Vorlesung kann nicht mit der Vorlesung "Anwendung höherer Programmiersprachen im Maschinenbau" (2182735) kombiniert werden.

Präsenzzeit: 22,5 Stunden
Übung: 22,5 Stunden (freiwillig)
Selbststudium: 75 Stunden

schriftliche Prüfung 90 Minuten

Literaturhinweise

1. C++: Einführung und professionelle Programmierung; U. Breymann, Hanser Verlag München
2. C++ and object-oriented numeric computing for Scientists and Engineers, Daoqui Yang, Springer Verlag.
3. The C++ Programming Language, Bjarne Stroustrup, Addison-Wesley
4. Die C++ Standardbibliothek, S. Kuhlins und M. Schader, Springer Verlag

Numerik:

1. Numerical recipes in C++ / C / Fortran (90), Cambridge University Press
2. Numerische Mathematik, H.R. Schwarz, Teubner Stuttgart
3. Numerische Simulation in der Moleküldynamik, Griebel, Knapek, Zumbusch, Caglar, Springer Verlag

Übungen zu Wissenschaftliches Programmieren für Ingenieure

2181739, WS 21/22, 2 SWS, Sprache: Deutsch, Im Studierendenportal anzeigen

Inhalt
Übungen zu den Themen der Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)

Präsenzzeit: 22,5 Stunden

Organisatorisches
Veranstaltungsort (RZ Pool Raum) wird in Vorlesung bekannt gegeben

Literaturhinweise
Skript zur Vorlesung "Wissenschaftliches Programmieren für Ingenieure" (2181738)